Graduate School of Agricultural Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan.
Graduate School of Agricultural Science, Tohoku University, Aoba 468-1, Aranaki, Aoba, Sendai 980-0845, Japan.
Langmuir. 2020 Jun 2;36(21):5863-5871. doi: 10.1021/acs.langmuir.0c00613. Epub 2020 May 21.
Thylakoid membranes in the chloroplast of plants, algae, and cyanobacteria are the powerhouse of photosynthesis, capturing solar energy and converting it into chemical energy. Although their structures and functions have been extensively studied, the intrinsically heterogeneous and dynamic nature of the membrane structures is still not fully understood. Investigating native thylakoid membranes is difficult due to their small size and limited external access to the chloroplast interior, while the bottom-up approaches based on model systems have been hampered by the sheer complexity of the native membrane. Here, we try to fill the gap by reconstituting the whole thylakoid membrane into a patterned substrate-supported planer bilayer. A mixture of thylakoid membrane purified from spinach leaves and synthetic phospholipid 1,2-dioleoyl--glycero-3-phosphocholine (DOPC) vesicles spontaneously formed a laterally continuous and fluid two-dimensional (2D) membrane in the scaffold of the patterned polymeric bilayer. Chlorophyll fluorescence arising from photosystem II (PSII) recovered after photobleaching, suggesting that the membrane components are laterally mobile. The reversible changes of chlorophyll fluorescence in the presence of the electron acceptors and/or inhibitors indicated that the electron transfer activity of PSII was retained. Furthermore, we confirmed the electron transfer activity of photosystem I (PSI) by observing the generation of nicotinamide adenine dinucleotide phosphate (NADPH) in the presence of water-soluble ferredoxin and ferredoxin-NADP reductase. The lateral mobility of membrane-bound molecules and the functional reconstitution of major photosystems provide evidence that our hybrid thylakoid membranes could be an excellent experimental platform to study the 2D molecular organization and machinery of photosynthesis.
植物、藻类和蓝细菌的叶绿体中的类囊体膜是光合作用的能量之源,它捕获太阳能并将其转化为化学能。尽管它们的结构和功能已经得到了广泛的研究,但膜结构的固有异质性和动态性质仍未被完全理解。由于类囊体膜的体积小,且进入叶绿体内部的通道有限,因此对天然类囊体膜的研究具有挑战性,而基于模型体系的自下而上的方法也受到天然膜的复杂性的阻碍。在这里,我们试图通过将整个类囊体膜重组到图案化基底支撑的平面双层中来填补这一空白。菠菜叶片中纯化的类囊体膜与合成磷脂 1,2-二油酰基-sn-甘油-3-磷酸胆碱(DOPC)囊泡的混合物在图案化聚合物双层的支架中自发形成了横向连续且流动的二维(2D)膜。在光漂白后,来自光系统 II(PSII)的叶绿素荧光恢复,表明膜成分是横向可移动的。在电子受体和/或抑制剂存在下,叶绿素荧光的可逆变化表明 PSII 的电子传递活性得以保留。此外,通过观察在水溶性铁氧还蛋白和铁氧还蛋白-NADP 还原酶存在下烟酰胺腺嘌呤二核苷酸磷酸(NADPH)的生成,我们证实了光系统 I(PSI)的电子传递活性。膜结合分子的横向流动性和主要光系统的功能重建为我们的混合类囊体膜可以成为研究二维光合作用分子组织和机制的优秀实验平台提供了证据。