Department of Chemistry, Southern Methodist University, P.O. Box 750314, Dallas, Texas 75275, United States.
Institute of Physics, University of Rostock, Albert-Einstein-Strasse 23-24, 18059 Rostock, Germany.
J Phys Chem Lett. 2023 Mar 30;14(12):3077-3083. doi: 10.1021/acs.jpclett.3c00086. Epub 2023 Mar 22.
The photosynthetic apparatus of plants and bacteria combine atomically precise pigment-protein complexes with dynamic membrane architectures to control energy transfer on the 10-100 nm length scales. Recently, synthetic materials have integrated photosynthetic antenna proteins to enhance exciton transport, though the influence of artificial packing on the excited-state dynamics in these biohybrid materials is not fully understood. Here, we use the adaptive hierarchy of pure states (adHOPS) to perform a formally exact simulation of excitation energy transfer within artificial aggregates of light-harvesting complex 2 (LH2) with a range of packing densities. We find that LH2 aggregates support a remarkable exciton diffusion length ranging from 100 nm at a biological packing density to 300 nm at the densest packing previously suggested in an artificial aggregate. The unprecedented scale of these formally exact calculations also underscores the efficiency with which adHOPS simulates excited-state processes in molecular materials.
植物和细菌的光合作用装置将原子精确的色素-蛋白复合物与动态膜结构结合在一起,以控制 10-100nm 长度尺度上的能量转移。最近,合成材料已经整合了光合作用天线蛋白以增强激子输运,尽管人工包装对这些生物混合材料中激发态动力学的影响尚未完全了解。在这里,我们使用纯态的自适应层次结构 (adHOPS) 对具有一系列堆积密度的光捕获复合物 2 (LH2) 人工聚集体中的激发能量转移进行正式精确的模拟。我们发现 LH2 聚集体支持显著的激子扩散长度,从生物堆积密度下的 100nm 到之前在人工聚集体中建议的最密集堆积密度下的 300nm。这些正式精确计算的空前规模也突出了 adHOPS 模拟分子材料中激发态过程的效率。