Suppr超能文献

转录因子分析预测乳腺癌无复发生存率:用于优化临床管理的列线图的开发与验证

Transcription Factor Profiling to Predict Recurrence-Free Survival in Breast Cancer: Development and Validation of a Nomogram to Optimize Clinical Management.

作者信息

Chen Hengyu, Ma Xianxiong, Yang Ming, Wang Mengyi, Li Lei, Huang Tao

机构信息

Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

NHC Key Laboratory of Hormones and Development, Tianjin Institute of Endocrinology, Tianjin Medical University Chu Hsien-I Memorial Hospital, Tianjin, China.

出版信息

Front Genet. 2020 Apr 24;11:333. doi: 10.3389/fgene.2020.00333. eCollection 2020.

Abstract

Breast cancer (BC) is the most frequently diagnosed cancer and the leading cause of cancer-related death in young women. Several prognostic and predictive transcription factor (TF) markers have been reported for BC; however, they are inconsistent due to small datasets, the heterogeneity of BC, and variation in data pre-processing approaches. This study aimed to identify an effective predictive TF signature for the prognosis of patients with BC. We analyzed the TF data of 868 patients with BC in The Cancer Genome Atlas (TCGA) database to investigate TF biomarkers relevant to recurrence-free survival (RFS). These patients were separated into training and internal validation datasets, with GSE2034 and GSE42568 used as external validation sets. A nine-TF signature was identified as crucially related to the RFS of patients with BC by univariate Cox proportional hazard analysis, least absolute shrinkage and selection operator (LASSO) Cox regression analysis, and multivariate Cox proportional hazard analysis in the training dataset. Kaplan-Meier analysis revealed that the nine-TF signature could significantly distinguish high- and low-risk patients in both the internal validation dataset and the two external validation sets. Receiver operating characteristic (ROC) analysis further verified that the nine-TF signature showed a good performance for predicting the RFS of patients with BC. In addition, we developed a nomogram based on risk score and lymph node status, with C-index, ROC, and calibration plot analysis, suggesting that it displays good performance and clinical value. In summary, we used integrated bioinformatics approaches to identify an effective predictive nine-TF signature which may be a potential biomarker for BC prognosis.

摘要

乳腺癌(BC)是年轻女性中最常被诊断出的癌症,也是癌症相关死亡的主要原因。已有多项用于乳腺癌的预后和预测转录因子(TF)标志物被报道;然而,由于数据集较小、乳腺癌的异质性以及数据预处理方法的差异,这些标志物并不一致。本研究旨在识别一种有效的预测性TF特征,用于乳腺癌患者的预后评估。我们分析了癌症基因组图谱(TCGA)数据库中868例乳腺癌患者的TF数据,以研究与无复发生存期(RFS)相关的TF生物标志物。这些患者被分为训练集和内部验证集,GSE2034和GSE42568用作外部验证集。通过单变量Cox比例风险分析、最小绝对收缩和选择算子(LASSO)Cox回归分析以及训练数据集中的多变量Cox比例风险分析,确定了一个与乳腺癌患者RFS密切相关的九TF特征。Kaplan-Meier分析表明,该九TF特征在内部验证集和两个外部验证集中均能显著区分高风险和低风险患者。受试者工作特征(ROC)分析进一步证实,该九TF特征在预测乳腺癌患者RFS方面表现良好。此外,我们基于风险评分和淋巴结状态开发了一种列线图,通过C指数、ROC和校准曲线分析表明,它具有良好的性能和临床价值。总之,我们使用综合生物信息学方法识别了一种有效的预测性九TF特征,它可能是乳腺癌预后的潜在生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6699/7193038/8a371c707331/fgene-11-00333-g001.jpg

相似文献

3
A 6 transcription factors-associated nomogram predicts the recurrence-free survival of thyroid papillary carcinoma.
Medicine (Baltimore). 2021 Oct 8;100(40):e27308. doi: 10.1097/MD.0000000000027308.
6
A Metabolic-associated Nomogram Predicts Recurrence Survival of Thyroid Cancer.
Curr Med Sci. 2021 Oct;41(5):1004-1011. doi: 10.1007/s11596-021-2399-x. Epub 2021 Sep 2.
7
A methylomics-associated nomogram predicts recurrence-free survival of thyroid papillary carcinoma.
Cancer Med. 2020 Oct;9(19):7183-7193. doi: 10.1002/cam4.3388. Epub 2020 Aug 11.
9
An immune-related prognostic signature for predicting breast cancer recurrence.
Cancer Med. 2020 Oct;9(20):7672-7685. doi: 10.1002/cam4.3408. Epub 2020 Aug 25.
10
Development and Validation of an 8-Gene Signature to Improve Survival Prediction of Colorectal Cancer.
Front Oncol. 2022 May 10;12:863094. doi: 10.3389/fonc.2022.863094. eCollection 2022.

引用本文的文献

1
Advancing precision and personalized breast cancer treatment through multi-omics technologies.
Am J Cancer Res. 2024 Dec 15;14(12):5614-5627. doi: 10.62347/MWNZ5609. eCollection 2024.
2
3
Integrative Molecular Analyses of an Individual Transcription Factor-Based Genomic Model for Lung Cancer Prognosis.
Dis Markers. 2021 Dec 7;2021:5125643. doi: 10.1155/2021/5125643. eCollection 2021.
4
Construction of Immune-Associated Nomogram for Predicting the Recurrence Survival Risk of Stage I Cervical Cancer.
Biomed Res Int. 2021 Jul 9;2021:6699131. doi: 10.1155/2021/6699131. eCollection 2021.
6
A Novel Transcription Factor-Based Prognostic Signature in Endometrial Cancer: Establishment and Validation.
Onco Targets Ther. 2021 Apr 13;14:2579-2598. doi: 10.2147/OTT.S293085. eCollection 2021.
7
Identification of a Transcription Factor Signature That Can Predict Breast Cancer Survival.
Comput Math Methods Med. 2021 Feb 19;2021:2649123. doi: 10.1155/2021/2649123. eCollection 2021.
8
Derivation and Application of Molecular Signatures to Prostate Cancer: Opportunities and Challenges.
Cancers (Basel). 2021 Jan 28;13(3):495. doi: 10.3390/cancers13030495.

本文引用的文献

1
Clock genes and cancer development in particular in endocrine tissues.
Endocr Relat Cancer. 2019 Jun;26(6):R305-R317. doi: 10.1530/ERC-19-0094.
2
Validation of miRNAs as Breast Cancer Biomarkers with a Machine Learning Approach.
Cancers (Basel). 2019 Mar 26;11(3):431. doi: 10.3390/cancers11030431.
6
An Update on Breast Cancer Multigene Prognostic Tests-Emergent Clinical Biomarkers.
Front Med (Lausanne). 2018 Sep 4;5:248. doi: 10.3389/fmed.2018.00248. eCollection 2018.
8
Downregulation of RFX1 predicts poor prognosis of patients with small hepatocellular carcinoma.
Eur J Surg Oncol. 2018 Jul;44(7):1087-1093. doi: 10.1016/j.ejso.2018.04.017. Epub 2018 Apr 27.
9
A 4-microRNA signature predicts lymph node metastasis and prognosis in breast cancer.
Hum Pathol. 2018 Jun;76:122-132. doi: 10.1016/j.humpath.2018.03.010. Epub 2018 Mar 17.
10
TFCP2/TFCP2L1/UBP1 transcription factors in cancer.
Cancer Lett. 2018 Apr 28;420:72-79. doi: 10.1016/j.canlet.2018.01.078. Epub 2018 Feb 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验