Suppr超能文献

用机器学习方法验证微小RNA作为乳腺癌生物标志物

Validation of miRNAs as Breast Cancer Biomarkers with a Machine Learning Approach.

作者信息

Rehman Oneeb, Zhuang Hanqi, Muhamed Ali Ali, Ibrahim Ali, Li Zhongwei

机构信息

College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA.

Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA.

出版信息

Cancers (Basel). 2019 Mar 26;11(3):431. doi: 10.3390/cancers11030431.

Abstract

Certain small noncoding microRNAs (miRNAs) are differentially expressed in normal tissues and cancers, which makes them great candidates for biomarkers for cancer. Previously, a selected subset of miRNAs has been experimentally verified to be linked to breast cancer. In this paper, we validated the importance of these miRNAs using a machine learning approach on miRNA expression data. We performed feature selection, using Information Gain (IG), Chi-Squared (CHI2) and Least Absolute Shrinkage and Selection Operation (LASSO), on the set of these relevant miRNAs to rank them by importance. We then performed cancer classification using these miRNAs as features using Random Forest (RF) and Support Vector Machine (SVM) classifiers. Our results demonstrated that the miRNAs ranked higher by our analysis had higher classifier performance. Performance becomes lower as the rank of the miRNA decreases, confirming that these miRNAs had different degrees of importance as biomarkers. Furthermore, we discovered that using a minimum of three miRNAs as biomarkers for breast cancers can be as effective as using the entire set of 1800 miRNAs. This work suggests that machine learning is a useful tool for functional studies of miRNAs for cancer detection and diagnosis.

摘要

某些小的非编码微小RNA(miRNA)在正常组织和癌症中存在差异表达,这使其成为癌症生物标志物的理想候选者。此前,已通过实验验证了一部分选定的miRNA与乳腺癌有关。在本文中,我们使用机器学习方法对miRNA表达数据进行分析,验证了这些miRNA的重要性。我们使用信息增益(IG)、卡方检验(CHI2)和最小绝对收缩和选择算子(LASSO)对这些相关miRNA进行特征选择,以根据重要性对它们进行排序。然后,我们使用随机森林(RF)和支持向量机(SVM)分类器,将这些miRNA作为特征进行癌症分类。我们的结果表明,经我们分析排名较高的miRNA具有更高的分类性能。随着miRNA排名的降低,性能也随之降低,这证实了这些miRNA作为生物标志物具有不同程度的重要性。此外,我们发现,使用最少三个miRNA作为乳腺癌的生物标志物与使用全部1800个miRNA的效果相当。这项工作表明,机器学习是用于miRNA功能研究以进行癌症检测和诊断的有用工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验