Suppr超能文献

亨廷顿蛋白多聚谷氨酰胺结构域与二维纳米材料结合后的长度依赖性结构转变

Length-Dependent Structural Transformations of Huntingtin PolyQ Domain Upon Binding to 2D-Nanomaterials.

作者信息

Feng Mei, Bell David R, Wang Zhenhua, Zhang Wei

机构信息

Department of Physics, Institute of Quantitative Biology, Zhejiang University, Hangzhou, China.

Computational Biological Center, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, United States.

出版信息

Front Chem. 2020 Apr 21;8:299. doi: 10.3389/fchem.2020.00299. eCollection 2020.

Abstract

There is a strong negative correlation between the polyglutamine (polyQ) domain length (Q-length) in the intrinsically disordered Huntingtin protein (Htt) exon-1 and the age of onset of Huntington's disease (HD). PolyQ of Q-length longer than 40 has the propensity of forming very compact aggregate structures, leading to HD at full penetrance. Recent advances in nanobiotechnology provided a new platform for the development of novel diagnosis and therapeutics. Here, we explore the possibility of utilizing 2D-nanomaterials to inhibit the formation of supercompact polyQ structures through the so-called "folding-upon-binding" where the protein structure is dependent on the binding substrate. Using molecular dynamics simulations, we characterize two polyQ peptides with Q-length of 22 (Q22, normal length) and 46 (Q46, typical length causing HD) binding to both graphene and molybdenum disulfide (MoS) nanosheets, which have been applied as antibacterial or anticancer agents. Upon binding, Q22 unfolds and elongates on both grapheme and MoS surfaces, regardless of its initial conformation, with graphene showing slightly stronger effect. In contrast, initially collapsed Q46 remains mostly collapsed within our simulation time on both nanosheets even though they do provide some "stretching" to Q46 as well. Further analyses indicate that the hydrophobic nature of graphene/MoS promotes the stretching of polyQ on nanosheets. However, there is strong competition with the intra-polyQ interactions (mainly internal hydrogen bonds) leading to the disparate folding/binding behaviors of Q22 and Q46. Our results present distinct Q-length specific behavior of the polyQ domain upon binding to two types of 2D-nanomaterials which holds clinical relevance for Huntington's disease.

摘要

在内在无序的亨廷顿蛋白(Htt)外显子1中的聚谷氨酰胺(polyQ)结构域长度(Q长度)与亨廷顿病(HD)的发病年龄之间存在强烈的负相关。Q长度超过40的polyQ有形成非常紧密的聚集结构的倾向,导致HD完全发病。纳米生物技术的最新进展为新型诊断和治疗方法的开发提供了一个新平台。在这里,我们探索利用二维纳米材料通过所谓的“结合时折叠”来抑制超紧密polyQ结构形成的可能性,其中蛋白质结构取决于结合底物。使用分子动力学模拟,我们表征了两种Q长度分别为22(Q22,正常长度)和46(Q46,导致HD的典型长度)的polyQ肽与石墨烯和二硫化钼(MoS)纳米片的结合,这两种纳米片已被用作抗菌或抗癌剂。结合后,Q22在石墨烯和MoS表面上都会展开并伸长,无论其初始构象如何,石墨烯的作用稍强。相比之下,最初折叠的Q46在我们的模拟时间内大部分仍保持折叠状态,尽管它们也确实对Q46有一些“拉伸”作用。进一步分析表明,石墨烯/MoS的疏水性促进了polyQ在纳米片上的拉伸。然而,与polyQ内部相互作用(主要是内部氢键)存在强烈竞争,导致Q22和Q46有不同的折叠/结合行为。我们的结果展示了polyQ结构域在与两种二维纳米材料结合时不同的Q长度特异性行为,这与亨廷顿病具有临床相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8db6/7189795/4db121d72eb7/fchem-08-00299-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验