Suppr超能文献

氧化石墨烯对蛋白质-蛋白质相互作用的潜在干扰。

Potential disruption of protein-protein interactions by graphene oxide.

作者信息

Feng Mei, Kang Hongsuk, Yang Zaixing, Luan Binquan, Zhou Ruhong

机构信息

Department of Physics, Institute of Quantitative Biology, Zhejiang University, Hangzhou 310027, China.

Computational Biological Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, USA.

出版信息

J Chem Phys. 2016 Jun 14;144(22):225102. doi: 10.1063/1.4953562.

Abstract

Graphene oxide (GO) is a promising novel nanomaterial with a wide range of potential biomedical applications due to its many intriguing properties. However, very little research has been conducted to study its possible adverse effects on protein-protein interactions (and thus subsequent toxicity to human). Here, the potential cytotoxicity of GO is investigated at molecular level using large-scale, all-atom molecular dynamics simulations to explore the interaction mechanism between a protein dimer and a GO nanosheet oxidized at different levels. Our theoretical results reveal that GO nanosheet could intercalate between the two monomers of HIV-1 integrase dimer, disrupting the protein-protein interactions and eventually lead to dimer disassociation as graphene does [B. Luan et al., ACS Nano 9(1), 663 (2015)], albeit its insertion process is slower when compared with graphene due to the additional steric and attractive interactions. This study helps to better understand the toxicity of GO to cell functions which could shed light on how to improve its biocompatibility and biosafety for its wide potential biomedical applications.

摘要

氧化石墨烯(GO)是一种很有前景的新型纳米材料,因其具有许多引人关注的特性而在生物医学领域具有广泛的潜在应用。然而,关于其对蛋白质-蛋白质相互作用可能产生的不利影响(进而对人体产生毒性)的研究却非常少。在此,我们通过大规模全原子分子动力学模拟在分子水平上研究了GO的潜在细胞毒性,以探索蛋白质二聚体与不同氧化程度的GO纳米片之间的相互作用机制。我们的理论结果表明,GO纳米片可以插入HIV-1整合酶二聚体的两个单体之间,破坏蛋白质-蛋白质相互作用,并最终导致二聚体解离,就像石墨烯那样[B. Luan等人,《美国化学会纳米》9(1),663(2015)],尽管由于额外的空间位阻和吸引相互作用,其插入过程与石墨烯相比更慢。这项研究有助于更好地理解GO对细胞功能的毒性,这可能为如何提高其生物相容性和生物安全性以实现其广泛的生物医学潜在应用提供线索。

相似文献

1
Potential disruption of protein-protein interactions by graphene oxide.
J Chem Phys. 2016 Jun 14;144(22):225102. doi: 10.1063/1.4953562.
2
Potential toxicity of graphene to cell functions via disrupting protein-protein interactions.
ACS Nano. 2015 Jan 27;9(1):663-9. doi: 10.1021/nn506011j. Epub 2014 Dec 17.
3
Graphene Oxide Nanosheets Retard Cellular Migration via Disruption of Actin Cytoskeleton.
Small. 2017 Jan;13(3). doi: 10.1002/smll.201602133. Epub 2016 Oct 20.
6
Dynamic Cooperation of Hydrogen Binding and π Stacking in ssDNA Adsorption on Graphene Oxide.
Chemistry. 2017 Sep 21;23(53):13100-13104. doi: 10.1002/chem.201701733. Epub 2017 Aug 23.
7
Direct Observation, Molecular Structure, and Location of Oxidation Debris on Graphene Oxide Nanosheets.
Environ Sci Technol. 2016 Aug 16;50(16):8568-77. doi: 10.1021/acs.est.6b01020. Epub 2016 Aug 3.
8
Effect of graphene oxide on the conformational transitions of amyloid beta peptide: A molecular dynamics simulation study.
J Mol Graph Model. 2015 Sep;61:175-85. doi: 10.1016/j.jmgm.2015.07.007. Epub 2015 Jul 28.
9
Insight into the Interaction of Graphene Oxide with Serum Proteins and the Impact of the Degree of Reduction and Concentration.
ACS Appl Mater Interfaces. 2015 Jun 24;7(24):13367-74. doi: 10.1021/acsami.5b01874. Epub 2015 Jun 10.
10
Mechanism of graphene oxide as an enzyme inhibitor from molecular dynamics simulations.
ACS Appl Mater Interfaces. 2014 May 28;6(10):7153-63. doi: 10.1021/am500167c. Epub 2014 May 15.

引用本文的文献

1
Exploring 2D Graphene-Based Nanomaterials for Biomedical Applications: A Theoretical Modeling Perspective.
Small Sci. 2025 Mar 16;5(6):2400505. doi: 10.1002/smsc.202400505. eCollection 2025 Jun.
2
Screening 2D Materials for Their Nanotoxicity toward Nucleic Acids and Proteins: An In Silico Outlook.
ACS Phys Chem Au. 2023 Nov 22;4(2):97-121. doi: 10.1021/acsphyschemau.3c00053. eCollection 2024 Mar 27.
3
Nanobio Interface Between Proteins and 2D Nanomaterials.
ACS Appl Mater Interfaces. 2023 Aug 2;15(30):35753-35787. doi: 10.1021/acsami.3c04582. Epub 2023 Jul 24.
4
Insights from molecular dynamics simulations of albumin adsorption on hydrophilic and hydrophobic surfaces.
J Mol Graph Model. 2022 May;112:108120. doi: 10.1016/j.jmgm.2021.108120. Epub 2022 Jan 5.
5
Length-Dependent Structural Transformations of Huntingtin PolyQ Domain Upon Binding to 2D-Nanomaterials.
Front Chem. 2020 Apr 21;8:299. doi: 10.3389/fchem.2020.00299. eCollection 2020.
6
Graphene oxide as a tool for antibiotic-resistant gene removal: a review.
Environ Sci Pollut Res Int. 2019 Jul;26(20):20148-20163. doi: 10.1007/s11356-019-05283-y. Epub 2019 May 21.
8
Graphene-VP40 interactions and potential disruption of the Ebola virus matrix filaments.
Biochem Biophys Res Commun. 2017 Nov 4;493(1):176-181. doi: 10.1016/j.bbrc.2017.09.052. Epub 2017 Sep 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验