Suppr超能文献

基于立体视频的实时表面变形恢复

Real-Time Surface Deformation Recovery from Stereo Videos.

作者信息

Zhou Haoyin, Jagadeesan Jayender

机构信息

Surgical Planning Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Med Image Comput Comput Assist Interv. 2019 Oct;11764:339-347. doi: 10.1007/978-3-030-32239-7_38. Epub 2019 Oct 10.

Abstract

Tissue deformation during the surgery may significantly decrease the accuracy of surgical navigation systems. In this paper, we propose an approach to estimate the deformation of tissue surface from stereo videos in real-time, which is capable of handling occlusion, smooth surface and fast deformation. We first use a stereo matching method to extract depth information from stereo video frames and generate the tissue template, and then estimate the deformation of the obtained template by minimizing ICP, ORB feature matching and as-rigid-as-possible (ARAP) costs. The main novelties are twofold: (1) Due to non-rigid deformation, feature matching outliers are difficult to be removed by traditional RANSAC methods; therefore we propose a novel 1-point RANSAC and reweighting method to preselect matching inliers, which handles smooth surfaces and fast deformations. (2) We propose a novel ARAP cost function based on dense connections between the control points to achieve better smoothing performance with limited number of iterations. Algorithms are designed and implemented for GPU parallel computing. Experiments on and data showed that this approach works at an update rate of 15 Hz with an accuracy of less than 2.5 mm on a NVIDIA Titan X GPU.

摘要

手术过程中的组织变形可能会显著降低手术导航系统的准确性。在本文中,我们提出了一种从立体视频实时估计组织表面变形的方法,该方法能够处理遮挡、光滑表面和快速变形。我们首先使用立体匹配方法从立体视频帧中提取深度信息并生成组织模板,然后通过最小化ICP、ORB特征匹配和尽可能刚体(ARAP)代价来估计所得模板的变形。主要创新点有两个方面:(1)由于非刚性变形,传统的RANSAC方法难以去除特征匹配的异常值;因此,我们提出了一种新颖的1点RANSAC和重新加权方法来预选匹配内点,该方法可以处理光滑表面和快速变形。(2)我们提出了一种基于控制点之间密集连接的新颖ARAP代价函数,以在有限的迭代次数下实现更好的平滑性能。算法针对GPU并行计算进行了设计和实现。在[具体数据]和[具体数据]上的实验表明,该方法在NVIDIA Titan X GPU上以15 Hz的更新速率运行,精度小于2.5 mm。

相似文献

1
Real-Time Surface Deformation Recovery from Stereo Videos.基于立体视频的实时表面变形恢复
Med Image Comput Comput Assist Interv. 2019 Oct;11764:339-347. doi: 10.1007/978-3-030-32239-7_38. Epub 2019 Oct 10.
2
Real-Time Dense Reconstruction of Tissue Surface From Stereo Optical Video.实时从立体光学视频重建组织表面的稠密重建。
IEEE Trans Med Imaging. 2020 Feb;39(2):400-412. doi: 10.1109/TMI.2019.2927436. Epub 2019 Jul 8.
4
BDIS-SLAM: a lightweight CPU-based dense stereo SLAM for surgery.BDIS-SLAM:一种基于 CPU 的轻量级稠密立体手术 SLAM。
Int J Comput Assist Radiol Surg. 2024 May;19(5):811-820. doi: 10.1007/s11548-023-03055-1. Epub 2024 Jan 19.
5
Hardware-Efficient Bilateral Filtering for Stereo Matching.硬件高效的立体匹配双边滤波。
IEEE Trans Pattern Anal Mach Intell. 2014 May;36(5):1026-32. doi: 10.1109/TPAMI.2013.186.
8
EMDQ: Removal of Image Feature Mismatches in Real-Time.EMDQ:实时去除图像特征不匹配
IEEE Trans Image Process. 2022;31:706-720. doi: 10.1109/TIP.2021.3134456. Epub 2021 Dec 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验