Zhou Haoyin, Zhang Tao, Jagadeesan Jayender
IEEE Trans Pattern Anal Mach Intell. 2019 Dec;41(12):3022-3033. doi: 10.1109/TPAMI.2018.2871832.
The ability to handle outliers is essential for performing the perspective- n-point (P nP) approach in practical applications, but conventional RANSAC+P3P or P4P methods have high time complexities. We propose a fast P nP solution named R1PP nP to handle outliers by utilizing a soft re-weighting mechanism and the 1-point RANSAC scheme. We first present a P nP algorithm, which serves as the core of R1PP nP, for solving the P nP problem in outlier-free situations. The core algorithm is an optimal process minimizing an objective function conducted with a random control point. Then, to reduce the impact of outliers, we propose a reprojection error-based re-weighting method and integrate it into the core algorithm. Finally, we employ the 1-point RANSAC scheme to try different control points. Experiments with synthetic and real-world data demonstrate that R1PP nP is faster than RANSAC+P3P or P4P methods especially when the percentage of outliers is large, and is accurate. Besides, comparisons with outlier-free synthetic data show that R1PP nP is among the most accurate and fast P nP solutions, which usually serve as the final refinement step of RANSAC+P3P or P4P. Compared with REPP nP, which is the state-of-the-art P nP algorithm with an explicit outliers-handling mechanism, R1PP nP is slower but does not suffer from the percentage of outliers limitation as REPP nP.
在实际应用中,处理异常值的能力对于执行透视n点(PnP)方法至关重要,但传统的RANSAC+P3P或P4P方法具有很高的时间复杂度。我们提出了一种名为R1PPnP的快速PnP解决方案,通过利用软重加权机制和1点RANSAC方案来处理异常值。我们首先提出一种PnP算法,它作为R1PPnP的核心,用于在无异常值的情况下解决PnP问题。核心算法是一个优化过程,通过随机控制点最小化目标函数。然后,为了减少异常值的影响,我们提出了一种基于重投影误差的重加权方法,并将其集成到核心算法中。最后,我们采用1点RANSAC方案来尝试不同的控制点。对合成数据和真实世界数据的实验表明,R1PPnP比RANSAC+P3P或P4P方法更快,特别是当异常值百分比很大时,并且很准确。此外,与无异常值的合成数据比较表明,R1PPnP是最准确和快速的PnP解决方案之一,这些解决方案通常作为RANSAC+P3P或P4P的最终细化步骤。与具有明确异常值处理机制的最新PnP算法REPPnP相比,R1PPnP速度较慢,但不像REPPnP那样受异常值百分比的限制。