Suppr超能文献

基于重加权和单步随机抽样一致性的PnP算法用于处理离群点

Re-weighting and 1-Point RANSAC-Based P nP Solution to Handle Outliers.

作者信息

Zhou Haoyin, Zhang Tao, Jagadeesan Jayender

出版信息

IEEE Trans Pattern Anal Mach Intell. 2019 Dec;41(12):3022-3033. doi: 10.1109/TPAMI.2018.2871832.

Abstract

The ability to handle outliers is essential for performing the perspective- n-point (P nP) approach in practical applications, but conventional RANSAC+P3P or P4P methods have high time complexities. We propose a fast P nP solution named R1PP nP to handle outliers by utilizing a soft re-weighting mechanism and the 1-point RANSAC scheme. We first present a P nP algorithm, which serves as the core of R1PP nP, for solving the P nP problem in outlier-free situations. The core algorithm is an optimal process minimizing an objective function conducted with a random control point. Then, to reduce the impact of outliers, we propose a reprojection error-based re-weighting method and integrate it into the core algorithm. Finally, we employ the 1-point RANSAC scheme to try different control points. Experiments with synthetic and real-world data demonstrate that R1PP nP is faster than RANSAC+P3P or P4P methods especially when the percentage of outliers is large, and is accurate. Besides, comparisons with outlier-free synthetic data show that R1PP nP is among the most accurate and fast P nP solutions, which usually serve as the final refinement step of RANSAC+P3P or P4P. Compared with REPP nP, which is the state-of-the-art P nP algorithm with an explicit outliers-handling mechanism, R1PP nP is slower but does not suffer from the percentage of outliers limitation as REPP nP.

摘要

在实际应用中,处理异常值的能力对于执行透视n点(PnP)方法至关重要,但传统的RANSAC+P3P或P4P方法具有很高的时间复杂度。我们提出了一种名为R1PPnP的快速PnP解决方案,通过利用软重加权机制和1点RANSAC方案来处理异常值。我们首先提出一种PnP算法,它作为R1PPnP的核心,用于在无异常值的情况下解决PnP问题。核心算法是一个优化过程,通过随机控制点最小化目标函数。然后,为了减少异常值的影响,我们提出了一种基于重投影误差的重加权方法,并将其集成到核心算法中。最后,我们采用1点RANSAC方案来尝试不同的控制点。对合成数据和真实世界数据的实验表明,R1PPnP比RANSAC+P3P或P4P方法更快,特别是当异常值百分比很大时,并且很准确。此外,与无异常值的合成数据比较表明,R1PPnP是最准确和快速的PnP解决方案之一,这些解决方案通常作为RANSAC+P3P或P4P的最终细化步骤。与具有明确异常值处理机制的最新PnP算法REPPnP相比,R1PPnP速度较慢,但不像REPPnP那样受异常值百分比的限制。

相似文献

4
Optimal randomized RANSAC.最优随机抽样一致性算法
IEEE Trans Pattern Anal Mach Intell. 2008 Aug;30(8):1472-82. doi: 10.1109/TPAMI.2007.70787.
5
USAC: a universal framework for random sample consensus.USAC:一种通用的随机抽样一致性框架。
IEEE Trans Pattern Anal Mach Intell. 2013 Aug;35(8):2022-38. doi: 10.1109/TPAMI.2012.257.
8
Graph-Cut RANSAC: Local Optimization on Spatially Coherent Structures.图割随机抽样一致性算法:对空间相干结构进行局部优化
IEEE Trans Pattern Anal Mach Intell. 2022 Sep;44(9):4961-4974. doi: 10.1109/TPAMI.2021.3071812. Epub 2022 Aug 4.
10
Convex Hull Aided Registration Method (CHARM).凸包辅助配准方法(CHARM)。
IEEE Trans Vis Comput Graph. 2017 Sep;23(9):2042-2055. doi: 10.1109/TVCG.2016.2602858. Epub 2016 Aug 31.

引用本文的文献

2
EMDQ: Removal of Image Feature Mismatches in Real-Time.EMDQ:实时去除图像特征不匹配
IEEE Trans Image Process. 2022;31:706-720. doi: 10.1109/TIP.2021.3134456. Epub 2021 Dec 28.
4
Real-Time Surface Deformation Recovery from Stereo Videos.基于立体视频的实时表面变形恢复
Med Image Comput Comput Assist Interv. 2019 Oct;11764:339-347. doi: 10.1007/978-3-030-32239-7_38. Epub 2019 Oct 10.
5
Real-Time Dense Reconstruction of Tissue Surface From Stereo Optical Video.实时从立体光学视频重建组织表面的稠密重建。
IEEE Trans Med Imaging. 2020 Feb;39(2):400-412. doi: 10.1109/TMI.2019.2927436. Epub 2019 Jul 8.

本文引用的文献

1
Mobile augmented reality for computer-assisted percutaneous nephrolithotomy.移动增强现实技术在计算机辅助经皮肾镜取石术中的应用。
Int J Comput Assist Radiol Surg. 2013 Jul;8(4):663-75. doi: 10.1007/s11548-013-0828-4. Epub 2013 Mar 23.
2
A Robust O(n) Solution to the Perspective-n-Point Problem.一种鲁棒的 O(n) 视角 n 点问题解决方案。
IEEE Trans Pattern Anal Mach Intell. 2012 Jul;34(7):1444-50. doi: 10.1109/TPAMI.2012.41. Epub 2012 Jan 31.
3
Least-squares fitting of two 3-d point sets.最小二乘拟合两个三维点集。
IEEE Trans Pattern Anal Mach Intell. 1987 May;9(5):698-700. doi: 10.1109/tpami.1987.4767965.
4
Quasiconvex optimization for robust geometric reconstruction.用于稳健几何重建的拟凸优化
IEEE Trans Pattern Anal Mach Intell. 2007 Oct;29(10):1834-47. doi: 10.1109/TPAMI.2007.1083.
5
Robust pose estimation from a planar target.基于平面目标的稳健姿态估计。
IEEE Trans Pattern Anal Mach Intell. 2006 Dec;28(12):2024-30. doi: 10.1109/TPAMI.2006.252.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验