El Kharbachi Abdelouahab, Wind Julia, Ruud Amund, Høgset Astrid B, Nygård Magnus M, Zhang Junxian, Sørby Magnus H, Kim Sangryun, Cuevas Fermin, Orimo Shin-Ichi, Fichtner Maximilian, Latroche Michel, Fjellvåg Helmer, Hauback Bjørn C
Institute for Energy Technology (IFE), P.O. Box 40, NO-2027 Kjeller, Norway.
Phys Chem Chem Phys. 2020 Jul 7;22(25):13872-13879. doi: 10.1039/d0cp01334j. Epub 2020 May 11.
The properties of the mixed system LiBH-LiCl-PS are studied with respect to all-solid-state batteries. The studied material undergoes an amorphization upon heating above 60 °C, accompanied with increased Li conductivity beneficial for battery electrolyte applications. The measured ionic conductivity is ∼10 S cm at room temperature with an activation energy of 0.40(2) eV after amorphization. Structural analysis and characterization of the material suggest that BH groups and PS may belong to the same molecular structure, where Cl ions interplay to accommodate the structural unit. Thanks to its conductivity, ductility and electrochemical stability (up to 5 V, Au vs. Li/Li), this new electrolyte is successfully tested in battery cells operated with a cathode material (layered TiS, theo. capacity 239 mA h g) and Li anode resulting in 93% capacity retention (10 cycles) and notable cycling stability under the current density ∼12 mA g (0.05C-rate) at 50 °C. Further advanced characterisation by means of operando synchrotron X-ray diffraction in transmission mode contributes explicitly to a better understanding of the (de)lithiation processes of solid-state battery electrodes operated at moderate temperatures.
针对全固态电池研究了混合体系LiBH-LiCl-PS的性能。所研究的材料在加热至60℃以上时会发生非晶化,同时锂电导率增加,这有利于电池电解质应用。非晶化后,在室温下测得的离子电导率约为10 S/cm,活化能为0.40(2) eV。对该材料的结构分析和表征表明,BH基团和PS可能属于同一分子结构,其中Cl离子相互作用以容纳结构单元。由于其导电性、延展性和电化学稳定性(高达5 V,Au对Li/Li),这种新型电解质已成功在使用阴极材料(层状TiS,理论容量239 mA h/g)和锂阳极的电池单元中进行测试,在50℃下,在约12 mA/g(0.05C倍率)的电流密度下,10次循环后容量保持率为93%,且具有显著的循环稳定性。通过透射模式下的原位同步加速器X射线衍射进行的进一步深入表征,有助于更好地理解在中等温度下运行的固态电池电极的(脱)锂过程。