Hu Long, Wang Hui, Liu Yongfeng, Fang Fang, Yuan Bin, Hu Renzong
School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou 510641, China.
State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
ACS Appl Mater Interfaces. 2022 Jan 12;14(1):1260-1269. doi: 10.1021/acsami.1c22561. Epub 2021 Dec 29.
A fast solid-state Li-ion conductor Li(BH)I@g-CN was synthesized using a simple ball-milling process. Because of the combined effect of halide substitution and the formation of an interface between Li(BH)I and g-CN, Li(BH)I@g-CN delivers a high ionic conductivity of 3.15 × 10 S/cm at 30 °C, which is about 1-2 orders of magnitude higher than that of Li(BH)I. Additionally, Li(BH)I@g-CN exhibits good electrochemical stability at a wide potential window of 0-5.0 V (vs Li/Li) and excellent thermal stability. The Li/Li symmetrical cell based on the Li(BH)I@g-CN electrolyte achieves long-term cycling with a small increase in overpotential, confirming superior electrochemical stability against Li foil. More importantly, Li(BH)I@g-CN-based Li batteries are compatible with S-C and FeF cathodes and MgH anodes and can achieve long-term cycling with LiTiO anodes at a temperature range from 30 to 60 °C. The developed strategy of coupling halide substitution together with interface modifications may open a new avenue toward the development of LiBH-based high ionic conductivity electrolytes for room-temperature all-solid-state Li batteries.
采用简单的球磨工艺合成了一种快速固态锂离子导体Li(BH)I@g-CN。由于卤化物取代以及Li(BH)I与g-CN之间形成界面的综合作用,Li(BH)I@g-CN在30℃时具有3.15×10 S/cm的高离子电导率,比Li(BH)I高约1-2个数量级。此外,Li(BH)I@g-CN在0-5.0 V(相对于Li/Li)的宽电位窗口内表现出良好的电化学稳定性和优异的热稳定性。基于Li(BH)I@g-CN电解质的Li/Li对称电池实现了长期循环,过电位略有增加,证实了对锂箔具有优异的电化学稳定性。更重要的是,基于Li(BH)I@g-CN的锂电池与S-C和FeF阴极以及MgH阳极兼容,并且在30至60℃的温度范围内与LiTiO阳极一起可实现长期循环。卤化物取代与界面修饰相结合的开发策略可能为开发用于室温全固态锂电池的基于LiBH的高离子电导率电解质开辟一条新途径。