Tygesen Alexander S, Mathiesen Nicolai R, Chang Jin Hyun, García-Lastra Juan María
Department of Energy Conversion and Storage, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
Phys Chem Chem Phys. 2020 Jun 24;22(24):13378-13389. doi: 10.1039/d0cp00719f.
The orientation of diatomic molecular impurities in crystals is a classic problem in physics, whose analysis started in the early 1930s with Pauling's pioneering studies and has extended to the present day. In the present work, we investigate the orientation of a superoxide ion (O2-), which is known to be oriented in the 1 1 0 direction when replacing a halide ion in alkali halide rock salt lattices. The unpaired electron of the superoxide, whose ground state is degenerate (2Πg), is oriented in the 0 0 1 direction for sodium halides while it is oriented in the 1 1[combining macron] 0 direction for potassium and rubidium halides. We performed density functional theory (DFT) calculations to describe the full adiabatic potential energy surface (APES) of this complex system for the first time with ab initio methods. We are focused on four alkali halide lattices, namely NaCl, NaBr, KCl, and KBr. We show that DFT, at the generalized gradient approximation (GGA) and meta-GGA levels, is able to reproduce all the experimental features for potassium halides. However, for sodium halides, although the DFT predicts the correct unpaired electron orientation, the forecasted APES energy minimum for the molecular orientation is found to be close to the 1 1 3/4 orientation, in contrast to the experimental 1 1 0 orientation. The difference in energy between the 1 1 3/4 and 1 1 0 orientation is less than 10 meV, which points out the subtleness of the considered problem. In addition to assessing the DFT accuracy and limitations to treat these systems, we also paid special attention to analyze the geometry distortions of the host lattice for the high symmetry orientations of the superoxide ion, i.e., 1 0 0, 1 1 0 and 1 1 1. In the case of the 1 1 0 molecular orientation, we find a strong dependence on the distance between the alkali ions in the 0 0 1 direction and the superoxide ion upon the unpaired electron orientation. This fact explains why the orientation of the unpaired electron is different in sodium vs. potassium halides. In the case of the 1 0 0 and 1 1 1 molecular orientations, we analyze the Jahn-Teller vibronic coupling to find an unusually large vibronic centrifugal term in the latter.
晶体中双原子分子杂质的取向是物理学中的一个经典问题,其分析始于20世纪30年代初鲍林的开创性研究,并一直延续到现在。在本工作中,我们研究了超氧离子(O₂⁻)的取向,已知当它取代碱金属卤化物岩盐晶格中的卤离子时,其取向为110方向。超氧离子的未成对电子,其基态是简并的(²Πg),对于卤化钠,它沿001方向取向,而对于卤化钾和卤化铷,它沿11[横线]0方向取向。我们首次使用从头算方法进行密度泛函理论(DFT)计算,以描述这个复杂系统的完整绝热势能面(APES)。我们关注四种碱金属卤化物晶格,即NaCl、NaBr、KCl和KBr。我们表明,在广义梯度近似(GGA)和meta-GGA水平下,DFT能够重现卤化钾的所有实验特征。然而,对于卤化钠,尽管DFT预测了正确的未成对电子取向,但预测的分子取向的APES能量最小值却接近11 3/4取向,这与实验的110取向相反。11 3/4和110取向之间的能量差小于10毫电子伏特,这指出了所考虑问题的微妙之处。除了评估DFT处理这些系统的准确性和局限性外,我们还特别关注分析超氧离子高对称取向(即100、110和111)时主体晶格的几何畸变。在110分子取向的情况下,我们发现未成对电子取向强烈依赖于001方向上碱离子与超氧离子之间的距离。这一事实解释了为什么卤化钠和卤化钾中未成对电子的取向不同。在100和111分子取向的情况下,我们分析了 Jahn-Teller 振动电子耦合,发现在后者中存在异常大的振动离心项。