Suppr超能文献

合成 PEDOT-TiO 异质结作为通过光电化学和电化学转换模式运行的双生物传感平台。

Synthesis of a PEDOT-TiO heterostructure as a dual biosensing platform operating via photoelectrochemical and electrochemical transduction mode.

机构信息

Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, PR China.

Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, PR China.

出版信息

Biosens Bioelectron. 2020 Aug 15;162:112234. doi: 10.1016/j.bios.2020.112234. Epub 2020 May 4.

Abstract

A new organic-inorganic heterostructure was prepared by the hydrothermal deposition of poly (3,4-dioxoethylthiophene) (PEDOT) on TiO nanowire arrays (TiONWs) to construct a biosensor that can simultaneously function as photoelectrochemical (PEC) and electrochemical (EC) sensor to detect lactate. In both cases, the PEDOT-TiONWs heterostructure not only acted as an immobilization platform for lactate dehydrogenase (LDH) and coenzyme NAD, but also generated current signals, which were further amplified by the cyclic catalytic mechanism. Specifically, LDH catalytically converted lactate to pyruvate, meanwhile NAD was transformed to NADH. For PEC sensing, the photo-generated holes from PEDOT-TiONWs could oxidize NADH back to NAD, fulfilling a catalytic cycle. Herein, PEDOT significantly promoted the separation of electron-hole pairs and enhanced PEC signals due to its well-matched energy levels with TiONWs, high conductivity and strong visible light absorption. A dynamic range of 0.5-300 μM was observed between the PEC signals and lactate concentration, based on which a sensitivity of 0.1386 ± 0.0053 μA μM and a detection limit of 0.08 ± 0.0032 μM were estimated. For EC sensing, PEDOT-TiONWs could directly oxidize NADH to NAD at ~0.54 V to realize the cyclic amplification due to the high conductivity and strong electrocatalytic capability of the heterostructure. The EC biosensor displayed a similar performance upon PEC mode of operation, except the relatively poor selectivity due to the possible oxidation of the interferences at the potentials > 0.54 V.

摘要

通过水热沉积法将聚(3,4-二氧乙基噻吩)(PEDOT)沉积在 TiO 纳米线阵列(TiONWs)上,制备了一种新型的有机-无机杂化结构,构建了一种生物传感器,该传感器可以同时作为光电化学(PEC)和电化学(EC)传感器来检测乳酸。在这两种情况下,PEDOT-TiONWs 杂化结构不仅充当了乳酸脱氢酶(LDH)和辅酶 NAD 的固定化平台,而且还产生了电流信号,这些信号通过循环催化机制进一步放大。具体来说,LDH 催化将乳酸转化为丙酮酸,同时 NAD 转化为 NADH。对于 PEC 传感,来自 PEDOT-TiONWs 的光生空穴可以将 NADH 氧化回 NAD,从而实现催化循环。在此,PEDOT 由于其与 TiONWs 匹配的能级、高导电性和强可见光吸收,显著促进了电子-空穴对的分离并增强了 PEC 信号。在 PEC 信号和乳酸浓度之间观察到 0.5-300 μM 的动态范围,基于此,估计出 0.1386 ± 0.0053 μA μM 的灵敏度和 0.08 ± 0.0032 μM 的检测限。对于 EC 传感,由于杂化结构的高导电性和强电催化能力,PEDOT-TiONWs 可以直接将 NADH 氧化为 NAD 至约 0.54 V,从而实现循环放大。除了由于在 > 0.54 V 的电位下可能发生干扰物的氧化而导致的相对较差的选择性之外,EC 生物传感器在 PEC 模式下表现出相似的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验