Probst Aline V, Desvoyes Bénédicte, Gutierrez Crisanto
Université Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France.
Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain.
J Exp Bot. 2020 Aug 17;71(17):5191-5204. doi: 10.1093/jxb/eraa230.
Organization of the genetic information into chromatin plays an important role in the regulation of all DNA template-based reactions. The incorporation of different variant versions of the core histones H3, H2A, and H2B, or the linker histone H1 results in nucleosomes with unique properties. Histone variants can differ by only a few amino acids or larger protein domains and their incorporation may directly affect nucleosome stability and higher order chromatin organization or indirectly influence chromatin function through histone variant-specific binding partners. Histone variants employ dedicated histone deposition machinery for their timely and locus-specific incorporation into chromatin. Plants have evolved specific histone variants with unique expression patterns and features. In this review, we discuss our current knowledge on histone variants in Arabidopsis, their mode of deposition, variant-specific post-translational modifications, and genome-wide distribution, as well as their role in defining different chromatin states.
遗传信息组织成染色质在所有基于DNA模板的反应调控中起着重要作用。核心组蛋白H3、H2A和H2B的不同变体版本,或连接组蛋白H1的掺入导致具有独特性质的核小体。组蛋白变体可能仅相差几个氨基酸或更大的蛋白质结构域,它们的掺入可能直接影响核小体稳定性和高阶染色质组织,或通过组蛋白变体特异性结合伴侣间接影响染色质功能。组蛋白变体利用专门的组蛋白沉积机制及时、位点特异性地掺入染色质。植物进化出了具有独特表达模式和特征的特定组蛋白变体。在这篇综述中,我们讨论了目前关于拟南芥中组蛋白变体的知识,它们的沉积模式、变体特异性翻译后修饰和全基因组分布,以及它们在定义不同染色质状态中的作用。