Suppr超能文献

定制基因分型阵列揭示了非洲人群中前列腺癌和其他癌症遗传风险的群体水平异质性。

A Custom Genotyping Array Reveals Population-Level Heterogeneity for the Genetic Risks of Prostate Cancer and Other Cancers in Africa.

机构信息

School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia.

Clark Atlanta University, Atlanta, Georgia.

出版信息

Cancer Res. 2020 Jul 1;80(13):2956-2966. doi: 10.1158/0008-5472.CAN-19-2165. Epub 2020 May 11.

Abstract

Although prostate cancer is the leading cause of cancer mortality for African men, the vast majority of known disease associations have been detected in European study cohorts. Furthermore, most genome-wide association studies have used genotyping arrays that are hindered by SNP ascertainment bias. To overcome these disparities in genomic medicine, the Men of African Descent and Carcinoma of the Prostate (MADCaP) Network has developed a genotyping array that is optimized for African populations. The MADCaP Array contains more than 1.5 million markers and an imputation backbone that successfully tags over 94% of common genetic variants in African populations. This array also has a high density of markers in genomic regions associated with cancer susceptibility, including 8q24. We assessed the effectiveness of the MADCaP Array by genotyping 399 prostate cancer cases and 403 controls from seven urban study sites in sub-Saharan Africa. Samples from Ghana and Nigeria clustered together, whereas samples from Senegal and South Africa yielded distinct ancestry clusters. Using the MADCaP array, we identified cancer-associated loci that have large allele frequency differences across African populations. Polygenic risk scores for prostate cancer were higher in Nigeria than in Senegal. In summary, individual and population-level differences in prostate cancer risk were revealed using a novel genotyping array. SIGNIFICANCE: This study presents an Africa-specific genotyping array, which enables investigators to identify novel disease associations and to fine-map genetic loci that are associated with prostate and other cancers.

摘要

虽然前列腺癌是非洲男性癌症死亡的主要原因,但绝大多数已知的疾病关联都是在欧洲研究队列中发现的。此外,大多数全基因组关联研究都使用了基因分型阵列,这些阵列受到 SNP 确定偏差的限制。为了克服基因组医学中的这些差异,非洲裔男性和前列腺癌(MADCaP)网络开发了一种针对非洲人群优化的基因分型阵列。MADCaP 阵列包含超过 150 万个标记和一个成功标记超过 94%的非洲人群常见遗传变异的推断骨干。该阵列还在与癌症易感性相关的基因组区域具有高密度的标记,包括 8q24。我们通过对来自撒哈拉以南非洲七个城市研究地点的 399 例前列腺癌病例和 403 例对照进行基因分型,评估了 MADCaP 阵列的有效性。来自加纳和尼日利亚的样本聚集在一起,而来自塞内加尔和南非的样本产生了不同的祖先簇。使用 MADCaP 阵列,我们确定了癌症相关的基因座,这些基因座在非洲人群中具有较大的等位基因频率差异。前列腺癌的多基因风险评分在尼日利亚高于塞内加尔。总之,使用新型基因分型阵列揭示了个体和人群水平前列腺癌风险的差异。意义:本研究提出了一种非洲特有的基因分型阵列,使研究人员能够识别新的疾病关联,并对与前列腺癌和其他癌症相关的遗传基因座进行精细映射。

相似文献

1
A Custom Genotyping Array Reveals Population-Level Heterogeneity for the Genetic Risks of Prostate Cancer and Other Cancers in Africa.
Cancer Res. 2020 Jul 1;80(13):2956-2966. doi: 10.1158/0008-5472.CAN-19-2165. Epub 2020 May 11.
3
Validation of genome-wide prostate cancer associations in men of African descent.
Cancer Epidemiol Biomarkers Prev. 2011 Jan;20(1):23-32. doi: 10.1158/1055-9965.EPI-10-0698. Epub 2010 Nov 11.
4
Characterizing genetic risk at known prostate cancer susceptibility loci in African Americans.
PLoS Genet. 2011 May;7(5):e1001387. doi: 10.1371/journal.pgen.1001387. Epub 2011 May 26.
5
Generalizability of established prostate cancer risk variants in men of African ancestry.
Int J Cancer. 2015 Mar 1;136(5):1210-7. doi: 10.1002/ijc.29066. Epub 2014 Jul 15.
6
Chromosome 8q24 variants are associated with prostate cancer risk in a high risk population of African ancestry.
Prostate. 2011 Jul;71(10):1054-63. doi: 10.1002/pros.21320. Epub 2011 Jan 12.
7
Genetic Hitchhiking and Population Bottlenecks Contribute to Prostate Cancer Disparities in Men of African Descent.
Cancer Res. 2018 May 1;78(9):2432-2443. doi: 10.1158/0008-5472.CAN-17-1550. Epub 2018 Feb 8.
9
African KhoeSan ancestry linked to high-risk prostate cancer.
BMC Med Genomics. 2019 Jun 4;12(1):82. doi: 10.1186/s12920-019-0537-0.
10
Results from a prostate cancer admixture mapping study in African-American men.
Hum Genet. 2009 Nov;126(5):637-42. doi: 10.1007/s00439-009-0712-z. Epub 2009 Jul 1.

引用本文的文献

1
Accelerating cancer genomics research in Sub-Saharan Africa.
Front Oncol. 2025 May 29;15:1531799. doi: 10.3389/fonc.2025.1531799. eCollection 2025.
2
Uncovering the genetic architecture and evolutionary roots of androgenetic alopecia in African men.
HGG Adv. 2025 Mar 24;6(3):100428. doi: 10.1016/j.xhgg.2025.100428.
4
Leveraging genetic ancestry continuum information to interpolate PRS for admixed populations.
medRxiv. 2025 Jan 14:2024.11.09.24316996. doi: 10.1101/2024.11.09.24316996.
5
Efficacy of abiraterone combined with prednisone in castration-resistant prostate cancer and its impact on miR-221/222 expression.
Am J Cancer Res. 2024 Oct 15;14(10):4708-4716. doi: 10.62347/VFUC8316. eCollection 2024.
6
Pan-African analysis identifies genetic differences in prostate cancer risk.
Nat Genet. 2024 Oct;56(10):2006-2007. doi: 10.1038/s41588-024-01932-2.
7
Heterogeneous genetic architectures of prostate cancer susceptibility in sub-Saharan Africa.
Nat Genet. 2024 Oct;56(10):2093-2103. doi: 10.1038/s41588-024-01931-3. Epub 2024 Oct 2.
8
Uncovering the genetic architecture and evolutionary roots of androgenetic alopecia in African men.
bioRxiv. 2024 Jan 15:2024.01.12.575396. doi: 10.1101/2024.01.12.575396.
9
Prostate cancer genetic risk and associated aggressive disease in men of African ancestry.
Nat Commun. 2023 Dec 5;14(1):8037. doi: 10.1038/s41467-023-43726-w.
10
Genetic and biological drivers of prostate cancer disparities in Black men.
Nat Rev Urol. 2024 May;21(5):274-289. doi: 10.1038/s41585-023-00828-w. Epub 2023 Nov 14.

本文引用的文献

1
African KhoeSan ancestry linked to high-risk prostate cancer.
BMC Med Genomics. 2019 Jun 4;12(1):82. doi: 10.1186/s12920-019-0537-0.
2
The Missing Diversity in Human Genetic Studies.
Cell. 2019 May 2;177(4):1080. doi: 10.1016/j.cell.2019.04.032.
3
Clinical use of current polygenic risk scores may exacerbate health disparities.
Nat Genet. 2019 Apr;51(4):584-591. doi: 10.1038/s41588-019-0379-x. Epub 2019 Mar 29.
4
Genetic disease risks can be misestimated across global populations.
Genome Biol. 2018 Nov 14;19(1):179. doi: 10.1186/s13059-018-1561-7.
6
Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
CA Cancer J Clin. 2018 Nov;68(6):394-424. doi: 10.3322/caac.21492. Epub 2018 Sep 12.
7
Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci.
Nat Genet. 2018 Jul;50(7):928-936. doi: 10.1038/s41588-018-0142-8. Epub 2018 Jun 11.
8
H3Africa: current perspectives.
Pharmgenomics Pers Med. 2018 Apr 10;11:59-66. doi: 10.2147/PGPM.S141546. eCollection 2018.
9
Genetic Hitchhiking and Population Bottlenecks Contribute to Prostate Cancer Disparities in Men of African Descent.
Cancer Res. 2018 May 1;78(9):2432-2443. doi: 10.1158/0008-5472.CAN-17-1550. Epub 2018 Feb 8.
10
Genetic risk of prostate cancer in Ugandan men.
Prostate. 2018 Apr;78(5):370-376. doi: 10.1002/pros.23481. Epub 2018 Jan 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验