Suppr超能文献

基于Copula 的预测评分性能评估数值策略。

A numerical strategy to evaluate performance of predictive scores via a copula-based approach.

机构信息

Department of Biostatistics and Research Decision Sciences, Merck & Co., Inc, Kenilworth, New Jersey, USA.

Division of Biostatistics, New York University School of Medicine, New York, New York, USA.

出版信息

Stat Med. 2020 Sep 10;39(20):2671-2684. doi: 10.1002/sim.8566. Epub 2020 May 11.

Abstract

Assessing and comparing the performance of correlated predictive scores are of current interest in precision medicine. Given the limitations of available theoretical approaches for assessing and comparing the predictive accuracy, numerical methods are highly desired which, however, have not been systematically developed due to technical challenges. The main challenges include the lack of a general strategy on effectively simulating many kinds of correlated predictive scores each with some given level of predictive accuracy in either concordance index or the area under a receiver operating characteristic curve area under the curves (AUC). To fill in this important knowledge gap, this paper is to provide a general copula-based numeric framework for assessing and comparing predictive performance of correlated predictive or risk scores. The new algorithms are designed to effectively simulate correlated predictive scores with given levels of predictive accuracy as measured in terms of concordance indices or time-dependent AUC for predicting survival outcomes. The copula-based numerical strategy is convenient for numerically evaluating and comparing multiple measures of predictive accuracy of correlated risk scores and for investigating finite-sample properties of test statistics and confidence intervals as well as assessing for optimism of given performance measures using cross-validation or bootstrap.

摘要

在精准医学中,评估和比较相关预测评分的性能是当前的研究热点。鉴于评估和比较预测准确性的现有理论方法存在局限性,因此非常需要数值方法,但由于技术挑战,这些方法尚未得到系统开发。主要挑战包括缺乏一种通用策略,无法有效地模拟多种具有给定预测准确性水平的相关预测评分,无论是在一致性指数还是在接收者操作特征曲线下面积(曲线下面积,AUC)方面。为了填补这一重要的知识空白,本文旨在提供一种基于copula 的通用数值框架,用于评估和比较相关预测或风险评分的预测性能。新算法旨在有效地模拟具有给定预测准确性水平的相关预测评分,这些准确性水平可以通过一致性指数或用于预测生存结果的时间依赖性 AUC 来衡量。基于 copula 的数值策略便于数值评估和比较相关风险评分的多个预测准确性度量,以及研究检验统计量和置信区间的有限样本性质,以及使用交叉验证或引导法评估给定性能度量的乐观性。

相似文献

10
Estimation of ROC curve with complex survey data.利用复杂调查数据估计ROC曲线。
Stat Med. 2015 Apr 15;34(8):1293-303. doi: 10.1002/sim.6405. Epub 2014 Dec 29.

本文引用的文献

1
On comparing 2 correlated C indices with censored survival data.比较两个具有删失生存数据的相关C指数。
Stat Med. 2017 Nov 10;36(25):4041-4049. doi: 10.1002/sim.7414. Epub 2017 Jul 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验