Suppr超能文献

深度学习在双参数 MRI 前列腺癌检测和分级中的回归分析。

Deep Learning Regression for Prostate Cancer Detection and Grading in Bi-Parametric MRI.

出版信息

IEEE Trans Biomed Eng. 2021 Feb;68(2):374-383. doi: 10.1109/TBME.2020.2993528. Epub 2021 Jan 20.

Abstract

One of the most common types of cancer in men is prostate cancer (PCa). Biopsies guided by bi-parametric magnetic resonance imaging (MRI) can aid PCa diagnosis. Previous works have mostly focused on either detection or classification of PCa from MRI. In this work, however, we present a neural network that simultaneously detects and grades cancer tissue in an end-to-end fashion. This is more clinically relevant than the classification goal of the ProstateX-2 challenge. We used the dataset of this challenge for training and testing. We use a 2D U-Net with MRI slices as input and lesion segmentation maps that encode the Gleason Grade Group (GGG), a measure for cancer aggressiveness, as output. We propose a method for encoding the GGG in the model target that takes advantage of the fact that the classes are ordinal. Furthermore, we evaluate methods for incorporating prostate zone segmentations as prior information, and ensembling techniques. The model scored a voxel-wise weighted kappa of 0.446 ±0.082 and a Dice similarity coefficient for segmenting clinically significant cancer of 0.370 ±0.046, obtained using 5-fold cross-validation. The lesion-wise weighted kappa on the ProstateX-2 challenge test set was 0.13 ±0.27. We show that our proposed model target outperforms standard multiclass classification and multi-label ordinal regression. Additionally, we present a comparison of methods for further improvement of the model performance.

摘要

男性最常见的癌症之一是前列腺癌(PCa)。基于双参数磁共振成像(MRI)的活检可以辅助 PCa 的诊断。以前的工作主要集中在从 MRI 中检测或分类 PCa 上。然而,在这项工作中,我们提出了一个神经网络,可以端到端地同时检测和分级癌组织。这比 ProstateX-2 挑战赛的分类目标更具临床相关性。我们使用该挑战赛的数据集进行训练和测试。我们使用二维 U-Net 作为输入,输入 MRI 切片,使用病变分割图作为输出,病变分割图编码用于衡量癌症侵袭性的 Gleason 分级组(GGG)。我们提出了一种在模型目标中编码 GGG 的方法,该方法利用了类是有序的事实。此外,我们评估了将前列腺区部分割作为先验信息和集成技术的方法。该模型在 5 折交叉验证中获得了 0.446±0.082 的体素加权 Kappa 和 0.370±0.046 的分割临床显著癌症的 Dice 相似系数。在 ProstateX-2 挑战赛测试集中,病变加权 Kappa 为 0.13±0.27。我们表明,我们提出的模型目标优于标准的多类分类和多标签有序回归。此外,我们还展示了进一步提高模型性能的方法比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验