Department of Computer Science, University of Kerala, Kariavattom, Thiruvananthapuram 695581, Kerala, India.
Department of Computer Science, Cochin University of Science and Technology, Kochi 682022, Kerala, India.
Comput Med Imaging Graph. 2018 Nov;69:60-68. doi: 10.1016/j.compmedimag.2018.08.006. Epub 2018 Aug 25.
A novel method to determine the Grade Group (GG) in prostate cancer (PCa) using multi-parametric magnetic resonance imaging (mpMRI) biomarkers is investigated in this paper. In this method, high-level features are extracted from hand-crafted texture features using a deep network of stacked sparse autoencoders (SSAE) and classified them using a softmax classifier (SMC). Transaxial T2 Weighted (T2W), Apparent Diffusion Coefficient (ADC) and high B-Value Diffusion-Weighted (BVAL) images obtained from PROSTATEx-2 2017 challenge dataset are used in this technique. The method was evaluated on the challenge dataset composed of a training set of 112 lesions and a test set of 70 lesions. It achieved a quadratic-weighted Kappa score of 0.2772 on evaluation using test dataset of the challenge. It also reached a Positive Predictive Value (PPV) of 80% in predicting PCa with GG > 1. The method achieved first place in the challenge, winning over 43 methods submitted by 21 groups. A 3-fold cross-validation using training data of the challenge was further performed and the method achieved a quadratic-weighted kappa score of 0.2326 and Positive Predictive Value (PPV) of 80.26% in predicting PCa with GG > 1. Even though the training dataset is a highly imbalanced one, the method was able to achieve a fair kappa score. Being one of the pioneer methods which attempted to classify prostate cancer into 5 grade groups from MRI images, it could serve as a base method for further investigations and improvements.
本文研究了一种使用多参数磁共振成像(mpMRI)生物标志物确定前列腺癌(PCa)分级组(GG)的新方法。在该方法中,使用堆叠稀疏自动编码器(SSAE)的深度网络从手工制作的纹理特征中提取高级特征,并使用 softmax 分类器(SMC)对其进行分类。该技术使用来自 PROSTATEx-2017 挑战赛数据集的横轴 T2 加权(T2W)、表观扩散系数(ADC)和高 B 值扩散加权(BVAL)图像。该方法在由 112 个病灶的训练集和 70 个病灶的测试集组成的挑战数据集上进行了评估。在使用测试数据集进行评估时,它获得了 0.2772 的二次加权 Kappa 评分。它还在预测 GG>1 的 PCa 时达到了 80%的阳性预测值(PPV)。该方法在挑战赛中获得第一名,击败了 21 个小组提交的 43 种方法。进一步对挑战赛的训练数据进行了 3 倍交叉验证,该方法在预测 GG>1 的 PCa 时获得了 0.2326 的二次加权 kappa 评分和 80.26%的阳性预测值(PPV)。尽管训练数据集是一个高度不平衡的数据集,但该方法能够获得公平的 kappa 评分。作为尝试从 MRI 图像将前列腺癌分类为 5 个等级组的先驱方法之一,它可以作为进一步研究和改进的基础方法。