Suppr超能文献

基于合成数据和弱标注 RGB 图像的三维手姿估计。

3D Hand Pose Estimation Using Synthetic Data and Weakly Labeled RGB Images.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2021 Nov;43(11):3739-3753. doi: 10.1109/TPAMI.2020.2993627. Epub 2021 Oct 1.

Abstract

Compared with depth-based 3D hand pose estimation, it is more challenging to infer 3D hand pose from monocular RGB images, due to the substantial depth ambiguity and the difficulty of obtaining fully-annotated training data. Different from the existing learning-based monocular RGB-input approaches that require accurate 3D annotations for training, we propose to leverage the depth images that can be easily obtained from commodity RGB-D cameras during training, while during testing we take only RGB inputs for 3D joint predictions. In this way, we alleviate the burden of the costly 3D annotations in real-world dataset. Particularly, we propose a weakly-supervised method, adaptating from fully-annotated synthetic dataset to weakly-labeled real-world single RGB dataset with the aid of a depth regularizer, which serves as weak supervision for 3D pose prediction. To further exploit the physical structure of 3D hand pose, we present a novel CVAE-based statistical framework to embed the pose-specific subspace from RGB images, which can then be used to infer the 3D hand joint locations. Extensive experiments on benchmark datasets validate that our proposed approach outperforms baselines and state-of-the-art methods, which proves the effectiveness of the proposed depth regularizer and the CVAE-based framework.

摘要

与基于深度的 3D 手部姿势估计相比,从单目 RGB 图像推断 3D 手部姿势更具挑战性,因为存在大量的深度歧义,并且难以获得完全注释的训练数据。与现有的基于学习的单目 RGB 输入方法不同,这些方法需要准确的 3D 注释进行训练,我们提出利用可以在训练期间从商品 RGB-D 相机轻松获得的深度图像,而在测试时仅使用 RGB 输入进行 3D 关节预测。通过这种方式,我们减轻了现实世界数据集中昂贵的 3D 注释的负担。特别是,我们提出了一种弱监督方法,通过深度正则化器从完全注释的合成数据集自适应到弱标记的现实世界单 RGB 数据集,这为 3D 姿势预测提供了弱监督。为了进一步利用 3D 手部姿势的物理结构,我们提出了一种基于 CVAE 的新统计框架,将 RGB 图像中的姿势特定子空间嵌入其中,然后可以使用该框架来推断 3D 手部关节位置。在基准数据集上进行的广泛实验验证了我们提出的方法优于基线和最新方法,这证明了所提出的深度正则化器和基于 CVAE 的框架的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验