Suppr超能文献

基于五层集成 CNN 的三维手姿估计。

3D Hand Pose Estimation Based on Five-Layer Ensemble CNN.

机构信息

School of Information Engineering, Nanchang University, Nanchang 330031, China.

Center of Computer, Nanchang University, Nanchang 330031, China.

出版信息

Sensors (Basel). 2021 Jan 19;21(2):649. doi: 10.3390/s21020649.

Abstract

Estimating accurate 3D hand pose from a single RGB image is a highly challenging problem in pose estimation due to self-geometric ambiguities, self-occlusions, and the absence of depth information. To this end, a novel Five-Layer Ensemble CNN (5LENet) is proposed based on hierarchical thinking, which is designed to decompose the hand pose estimation task into five single-finger pose estimation sub-tasks. Then, the sub-task estimation results are fused to estimate full 3D hand pose. The hierarchical method is of great benefit to extract deeper and better finger feature information, which can effectively improve the estimation accuracy of 3D hand pose. In addition, we also build a hand model with the center of the palm (represented as Palm) connected to the middle finger according to the topological structure of hand, which can further boost the performance of 3D hand pose estimation. Additionally, extensive quantitative and qualitative results on two public datasets demonstrate the effectiveness of 5LENet, yielding new state-of-the-art 3D estimation accuracy, which is superior to most advanced estimation methods.

摘要

从单张 RGB 图像估计准确的 3D 手部姿势是姿态估计中的一个极具挑战性的问题,因为存在自几何歧义、自遮挡以及缺乏深度信息。为此,我们基于分层思维提出了一种新颖的五层集成卷积神经网络(5LENet),旨在将手部姿势估计任务分解为五个单手指姿势估计子任务。然后,融合子任务估计结果来估计完整的 3D 手部姿势。分层方法有利于提取更深层次和更好的手指特征信息,从而有效提高 3D 手部姿势的估计精度。此外,我们还根据手部的拓扑结构,建立了一个以掌心(表示为 Palm)连接到中指的手模型,这可以进一步提升 3D 手部姿势估计的性能。此外,在两个公共数据集上的广泛定量和定性结果表明 5LENet 的有效性,取得了新的最先进的 3D 估计精度,优于大多数先进的估计方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57bc/7832339/fd18424085fa/sensors-21-00649-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验