Suppr超能文献

EBST:一种基于进化多目标优化的工具,用于发现卵巢癌中的潜在生物标志物。

EBST: An Evolutionary Multi-Objective Optimization Based Tool for Discovering Potential Biomarkers in Ovarian Cancer.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2021 Nov-Dec;18(6):2384-2393. doi: 10.1109/TCBB.2020.2993150. Epub 2021 Dec 8.

Abstract

Ovarian cancer is the deadliest gynecologic malignancy, mainly due to limitations in early diagnosis. With advances in high-throughput technologies, research interest in identifying novel and customized tumor biomarkers for early detection and diagnosis is rapidly growing. Here we introduce a new tool called EBST to select microRNAs with biomarker potency in ovarian cancer. This tool has pre-processing options and Its core is the use of Modified Multi Objective Imperialist Competitive Algorithm and six objective functions based on the classifier performance/structure evaluation, clustering error and mRMR filter. In this paper, we used the FDR filter in the pre-processing stage and considered five objective functions, four of which relate to the l-SVM classifier performance and one to the average mRMR ranking. The proposed method has identified 11 microRNAs including hsa-miR-6784-5p, hsa-miR-1228-5p, hsa-miR-8073, hsa-miR-6756-5p, hsa-miR-1307-3p, hsa-miR-4697-5p, hsa-miR-3663-3p, hsa-miR-328-5p, hsa-miR-1228-3p, hsa-miR-6821-5p, hsa-miR-1268a. Data classification by the proposed model showed 100 percent sensitivity, 99.38 percent specificity, 99.69 percent accuracy and 99.39 percent positive predictive value. In comparison with routine state-of-the-art methods, superiority of our method was confirmed. The biological evaluation of selected microRNAs using bioinformatics tools and published articles confirms their role in cancer signaling pathways. The tool and its MATLAB code are freely available at https://github.com/hanif-y.

摘要

卵巢癌是致命的妇科恶性肿瘤,主要是由于早期诊断的局限性。随着高通量技术的进步,研究兴趣迅速增长,以确定新的和定制的肿瘤生物标志物用于早期检测和诊断。在这里,我们引入了一种称为 EBST 的新工具,用于选择在卵巢癌中有生物标志物潜力的 microRNAs。该工具具有预处理选项,其核心是使用改进的多目标帝国主义竞争算法和基于分类器性能/结构评估、聚类误差和 mRMR 滤波器的六个目标函数。在本文中,我们在预处理阶段使用了 FDR 滤波器,并考虑了五个目标函数,其中四个与 l-SVM 分类器性能相关,一个与平均 mRMR 排序相关。所提出的方法已经鉴定出 11 个 microRNAs,包括 hsa-miR-6784-5p、hsa-miR-1228-5p、hsa-miR-8073、hsa-miR-6756-5p、hsa-miR-1307-3p、hsa-miR-4697-5p、hsa-miR-3663-3p、hsa-miR-328-5p、hsa-miR-1228-3p、hsa-miR-6821-5p、hsa-miR-1268a。所提出模型的数据分类显示出 100%的灵敏度、99.38%的特异性、99.69%的准确性和 99.39%的阳性预测值。与常规的最先进方法相比,证实了我们方法的优越性。使用生物信息学工具和已发表的文章对选定的 microRNAs 进行生物评估,证实了它们在癌症信号通路中的作用。该工具及其 MATLAB 代码可在 https://github.com/hanif-y 上免费获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验