Suppr超能文献

用于超声心动图右心室定量分析的新型机器学习模型的开发——一项多模态验证研究。

Development of novel machine learning model for right ventricular quantification on echocardiography-A multimodality validation study.

作者信息

Beecy Ashley N, Bratt Alex, Yum Brian, Sultana Razia, Das Mukund, Sherifi Ines, Devereux Richard B, Weinsaft Jonathan W, Kim Jiwon

机构信息

Greenberg Cardiology Division, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.

Department of Radiology, Mayo Clinic (Minnesota), Rochester, MN, USA.

出版信息

Echocardiography. 2020 May;37(5):688-697. doi: 10.1111/echo.14674. Epub 2020 May 12.

Abstract

PURPOSE

Echocardiography (echo) is widely used for right ventricular (RV) assessment. Current techniques for RV evaluation require additional imaging and manual analysis; machine learning (ML) approaches have the potential to provide efficient, fully automated quantification of RV function.

METHODS

An automated ML model was developed to track the tricuspid annulus on echo using a convolutional neural network approach. The model was trained using 7791 image frames, and automated linear and circumferential indices quantifying annular displacement were generated. Automated indices were compared to an independent reference of cardiac magnetic resonance (CMR) defined RV dysfunction (RVEF < 50%).

RESULTS

A total of 101 patients prospectively underwent echo and CMR: Fully automated annular tracking was uniformly successful; analyses entailed minimal processing time (<1 second for all) and no user editing. Findings demonstrate all automated annular shortening indices to be lower among patients with CMR-quantified RV dysfunction (all P < .001). Magnitude of ML annular displacement decreased stepwise in relation to population-based tertiles of TAPSE, with similar results when ML analyses were localized to the septal or lateral annulus (all P ≤ .001). Automated segmentation techniques provided good diagnostic performance (AUC 0.69-0.73) in relation to CMR reference and compared to conventional RV indices (TAPSE and S') with high negative predictive value (NPV 84%-87% vs 83%-88%). Reproducibility was higher for ML algorithm as compared to manual segmentation with zero inter- and intra-observer variability and ICC 1.0 (manual ICC: 0.87-0.91).

CONCLUSIONS

This study provides an initial validation of a deep learning system for RV assessment using automated tracking of the tricuspid annulus.

摘要

目的

超声心动图(echo)被广泛用于右心室(RV)评估。目前评估RV的技术需要额外的成像和手动分析;机器学习(ML)方法有潜力提供高效、完全自动化的RV功能量化。

方法

开发了一种自动ML模型,使用卷积神经网络方法在超声心动图上追踪三尖瓣环。该模型使用7791个图像帧进行训练,并生成了量化瓣环位移的自动线性和圆周指数。将自动指数与心脏磁共振(CMR)定义的RV功能障碍(RVEF < 50%)的独立参考值进行比较。

结果

共有101例患者前瞻性地接受了超声心动图和CMR检查:完全自动化的瓣环追踪均成功;分析所需的处理时间极短(全部<1秒),且无需用户编辑。结果表明,在CMR量化的RV功能障碍患者中,所有自动瓣环缩短指数均较低(所有P <.001)。ML瓣环位移的幅度相对于基于人群的三尖瓣环平面收缩期位移(TAPSE)三分位数呈逐步下降,当ML分析局限于间隔或外侧瓣环时结果相似(所有P≤.001)。与CMR参考值相比,自动分割技术具有良好的诊断性能(AUC 0.69 - 0.73),与传统RV指数(TAPSE和S')相比具有较高的阴性预测值(NPV 84% - 87%对83% - 88%)。与手动分割相比,ML算法的可重复性更高,观察者间和观察者内的变异性为零,组内相关系数(ICC)为1.0(手动ICC:0.87 - 0.91)。

结论

本研究通过对三尖瓣环的自动追踪,对用于RV评估的深度学习系统进行了初步验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f95/7383774/ce87c4eb0bbf/ECHO-37-688-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验