Sk Md Fulbabu, Roy Rajarshi, Jonniya Nisha Amarnath, Poddar Sayan, Kar Parimal
Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, MP, India.
J Biomol Struct Dyn. 2021 Jul;39(10):3649-3661. doi: 10.1080/07391102.2020.1768149. Epub 2020 Jun 1.
The recent outbreak of novel "coronavirus disease 2019" (COVID-19) has spread rapidly worldwide, causing a global pandemic. In the present work, we have elucidated the mechanism of binding of two inhibitors, namely α-ketoamide and Z31792168, to SARS-CoV-2 main protease (M or 3CL) by using all-atom molecular dynamics simulations and free energy calculations. We calculated the total binding free energy (ΔG) of both inhibitors and further decomposed ΔG into various forces governing the complex formation using the Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) method. Our calculations reveal that α-ketoamide is more potent (ΔG= - 9.05 kcal/mol) compared to Z31792168 (ΔG= - 3.25 kcal/mol) against COVID-19 3CL. The increase in ΔG for α-ketoamide relative to Z31792168 arises due to an increase in the favorable electrostatic and van der Waals interactions between the inhibitor and 3CL. Further, we have identified important residues controlling the 3CL-ligand binding from per-residue based decomposition of the binding free energy. Finally, we have compared ΔG of these two inhibitors with the anti-HIV retroviral drugs, such as lopinavir and darunavir. It is observed that α-ketoamide is more potent compared to lopinavir and darunavir. In the case of lopinavir, a decrease in van der Waals interactions is responsible for the lower binding affinity compared to α-ketoamide. On the other hand, in the case of darunavir, a decrease in the favorable intermolecular electrostatic and van der Waals interactions contributes to lower affinity compared to α-ketoamide. Our study might help in designing rational anti-coronaviral drugs targeting the SARS-CoV-2 main protease.Communicated by Ramaswamy H. Sarma.
最近爆发的新型“2019冠状病毒病”(COVID-19)已在全球迅速传播,引发了全球大流行。在本研究中,我们通过全原子分子动力学模拟和自由能计算,阐明了两种抑制剂α-酮酰胺和Z31792168与严重急性呼吸综合征冠状病毒2(SARS-CoV-2)主要蛋白酶(M或3CL)的结合机制。我们计算了两种抑制剂的总结合自由能(ΔG),并使用分子力学/泊松-玻尔兹曼表面积(MM/PBSA)方法将ΔG进一步分解为控制复合物形成的各种作用力。我们的计算表明,与Z31792168(ΔG = -3.25 kcal/mol)相比,α-酮酰胺对COVID-19 3CL更有效(ΔG = -9.05 kcal/mol)。α-酮酰胺相对于Z31792168的ΔG增加是由于抑制剂与3CL之间有利的静电和范德华相互作用增加。此外,我们从结合自由能的逐个残基分解中确定了控制3CL-配体结合的重要残基。最后,我们将这两种抑制剂的ΔG与抗HIV逆转录病毒药物(如洛匹那韦和达芦那韦)进行了比较。结果发现,α-酮酰胺比洛匹那韦和达芦那韦更有效。就洛匹那韦而言,与α-酮酰胺相比,范德华相互作用的降低导致其结合亲和力较低。另一方面,就达芦那韦而言,与α-酮酰胺相比,有利的分子间静电和范德华相互作用的降低导致其亲和力较低。我们的研究可能有助于设计针对SARS-CoV-2主要蛋白酶的合理抗冠状病毒药物。由拉马斯瓦米·H·萨尔马传达。