Suppr超能文献

通过结构导向虚拟筛选方法鉴定抗新型冠状病毒主要蛋白酶的潜在分子。

Identification of potential molecules against COVID-19 main protease through structure-guided virtual screening approach.

作者信息

Mittal Lovika, Kumari Anita, Srivastava Mitul, Singh Mrityunjay, Asthana Shailendra

机构信息

Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster 3rd Milestone, Faridabad, Haryana, India.

出版信息

J Biomol Struct Dyn. 2021 Jul;39(10):3662-3680. doi: 10.1080/07391102.2020.1768151. Epub 2020 May 20.

Abstract

The pandemic caused by novel coronavirus disease 2019 (COVID-19) infecting millions of populations worldwide and counting, has demanded quick and potential therapeutic strategies. Current approved drugs or molecules under clinical trials can be a good pool for repurposing through techniques to quickly identify promising drug candidates. The structural information of recently released crystal structures of main protease (M) in APO and complex with inhibitors, N3, and 13b molecules was utilized to explore the binding site architecture through Molecular dynamics (MD) simulations. The stable state of M was used to conduct extensive virtual screening of the aforementioned drug pool. Considering the recent success of HIV protease molecules, we also used anti-protease molecules for drug repurposing purposes. The identified top hits were further evaluated through MD simulations followed by the binding free energy calculations using MM-GBSA. Interestingly, in our screening, several promising drugs stand out as potential inhibitors of M. However, based on control (N3 and 13b), we have identified six potential molecules, Leupeptin Hemisulphate, Pepstatin A, Nelfinavir, Birinapant, Lypression and Octreotide which have shown the reasonably significant MM-GBSA score. Further insight shows that the molecules form stable interactions with residues, that are mainly conserved and can be targeted for structure- and pharmacophore-based designing. The pharmacokinetic annotations and therapeutic importance have suggested that these molecules possess drug-like properties and pave their way for studies.Communicated by Ramaswamy H. Sarma.

摘要

由2019年新型冠状病毒病(COVID-19)引发的大流行已感染全球数百万人口且仍在增加,这需要快速且有潜力的治疗策略。目前已批准的药物或正在临床试验的分子可以通过快速识别有前景的候选药物的技术,成为重新利用的良好资源库。利用最近发布的主要蛋白酶(M)在无配体状态以及与抑制剂N3和13b分子形成复合物时的晶体结构信息,通过分子动力学(MD)模拟来探索结合位点结构。利用M的稳定状态对上述药物库进行广泛的虚拟筛选。考虑到HIV蛋白酶分子最近取得的成功,我们还将抗蛋白酶分子用于药物重新利用的目的。通过MD模拟对鉴定出的顶级命中物进行进一步评估,随后使用MM-GBSA计算结合自由能。有趣的是,在我们的筛选中,有几种有前景的药物脱颖而出,成为M的潜在抑制剂。然而,基于对照(N3和13b),我们鉴定出了六种潜在分子,即半胱氨酸亮抑酶肽、胃蛋白酶抑制剂A、奈非那韦、比瑞那潘、利普司他汀和奥曲肽,它们显示出相当显著的MM-GBSA评分。进一步的深入研究表明,这些分子与主要保守的残基形成稳定的相互作用,可作为基于结构和药效团设计的靶点。药代动力学注释和治疗重要性表明,这些分子具有类药物特性,并为进一步研究铺平了道路。由拉马斯瓦米·H·萨尔马传达。

相似文献

6
In-silico drug repurposing for targeting SARS-CoV-2 main protease (M).针对 SARS-CoV-2 主蛋白酶(M)的计算机药物再利用。
J Biomol Struct Dyn. 2022 Apr;40(7):3003-3010. doi: 10.1080/07391102.2020.1844058. Epub 2020 Nov 12.

引用本文的文献

8
Berbamine prevents SARS-CoV-2 entry and transmission.小檗胺可阻止新型冠状病毒的侵入与传播。
iScience. 2024 Nov 8;27(12):111347. doi: 10.1016/j.isci.2024.111347. eCollection 2024 Dec 20.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验