Xu YunYun, Wang Qiang, Xu GaoQiang, Xu YouJian, Mou YiPing
General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
General Surgery, Tiantai People's Hospital, Taizhou, Zhejiang, China.
Front Chem. 2024 Nov 25;12:1482758. doi: 10.3389/fchem.2024.1482758. eCollection 2024.
In this study, we leveraged a sophisticated active learning model to enhance virtual screening for SQLE inhibitors. The model's improved predictive accuracy identified compounds with significant advantages in binding affinity and thermodynamic stability. Detailed analyses, including molecular dynamics simulations and ADMET profiling, were conducted, particularly focusing on compounds CMNPD11566 and its derivative HCJ007. CMNPD11566 showed stable interactions with SQLE, while HCJ007 exhibited improved binding stability and more frequent interactions with key residues, indicating enhanced dynamic adaptability and overall binding effectiveness. ADMET data comparison highlighted HCJ007s superior profile in terms of lower toxicity and better drug-likeness. Our findings suggest HCJ007 as a promising candidate for SQLE inhibition, with significant improvements over CMNPD11566 in various pharmacokinetic and safety parameters. The study underscores the efficacy of computational models in drug discovery and the importance of comprehensive preclinical evaluations.
在本研究中,我们利用一种先进的主动学习模型来加强对SQLE抑制剂的虚拟筛选。该模型提高的预测准确性识别出了在结合亲和力和热力学稳定性方面具有显著优势的化合物。我们进行了详细分析,包括分子动力学模拟和ADMET分析,特别关注化合物CMNPD11566及其衍生物HCJ007。CMNPD11566与SQLE表现出稳定的相互作用,而HCJ007则表现出改善的结合稳定性以及与关键残基更频繁的相互作用,表明其动态适应性和整体结合效果得到增强。ADMET数据比较突出了HCJ007在较低毒性和更好的类药性方面的优越特征。我们的研究结果表明HCJ007是一种有前景的SQLE抑制剂候选物,在各种药代动力学和安全性参数方面比CMNPD11566有显著改善。该研究强调了计算模型在药物发现中的功效以及全面临床前评估的重要性。