Suppr超能文献

Spin filtering and spin separation in 2D materials by topological spin Hall effect.

作者信息

Zadorozhnyi Andrei, Dahnovsky Yuri

机构信息

Department of Physics and Astronomy/3905 1000 E. University Avenue University of Wyoming Laramie, WY 82071, United States of America.

出版信息

J Phys Condens Matter. 2020 Jul 3;32(40). doi: 10.1088/1361-648X/ab926c.

Abstract

The needs of high speed performance electronic devices for various applications require novel materials and new physical phenomena. For these purposes we propose to study new physical effects based on electron scattering on magnetic skyrmions and vortices distributed in a 2D ferromagnetic material. We show that the topological spin Hall effect can be efficiently employed for the filtering, switching, and separation of spin currents. For some values of the parameters (conduction electron concentrations, and skyrmion/vortex sizes) it is possible to separate Hall currents for different electron spin projections as it is like for different carrier charges (electrons and holes) in the normal Hall effect. The calculations are performed using the Boltzmann kinetic equation for the nonequilibrium distribution function and the Lippmann-Schwinger equation for the transition matrix in the whole range of the adiabaticity parameter. The spin filtering due to the skyrmion/vortex scattering can be several orders of magnitude more efficient in the narrow range of the electron concentrations than that of the ordinary ferromagnetic spin polarization in spintronics.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验