Suppr超能文献

监控场景中的训练数据提取和目标检测。

Training Data Extraction and Object Detection in Surveillance Scenario.

机构信息

Institute of Control and Computation Engineering, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warszawa, Poland.

出版信息

Sensors (Basel). 2020 May 8;20(9):2689. doi: 10.3390/s20092689.

Abstract

Police and various security services use video analysis for securing public space, mass events, and when investigating criminal activity. Due to a huge amount of data supplied to surveillance systems, some automatic data processing is a necessity. In one typical scenario, an operator marks an object in an image frame and searches for all occurrences of the object in other frames or even image sequences. This problem is hard in general. Algorithms supporting this scenario must reconcile several seemingly contradicting factors: training and detection speed, detection reliability, and learning from small data sets. In the system proposed here, we use a two-stage detector. The first region proposal stage is based on a Cascade Classifier while the second classification stage is based either on a Support Vector Machines (SVMs) or Convolutional Neural Networks (CNNs). The proposed configuration ensures both speed and detection reliability. In addition to this, an object tracking and background-foreground separation algorithm is used, supported by the GrabCut algorithm and a sample synthesis procedure, in order to collect rich training data for the detector. Experiments show that the system is effective, useful, and applicable to practical surveillance tasks.

摘要

警方和各种安全部门使用视频分析来保护公共空间、大型活动,并在调查犯罪活动时使用。由于监控系统提供了大量的数据,因此一些自动数据处理是必要的。在一个典型的场景中,操作员在图像帧中标记一个对象,并在其他帧甚至图像序列中搜索该对象的所有出现。这个问题通常很困难。支持这种场景的算法必须协调几个看似矛盾的因素:训练和检测速度、检测可靠性以及从小数据集学习。在本文提出的系统中,我们使用了两阶段检测器。第一阶段的区域建议阶段基于级联分类器,第二阶段的分类阶段则基于支持向量机 (SVMs) 或卷积神经网络 (CNNs)。所提出的配置确保了速度和检测可靠性。除此之外,还使用了一个目标跟踪和背景-前景分离算法,该算法得到了 GrabCut 算法和样本合成过程的支持,以便为检测器收集丰富的训练数据。实验表明,该系统是有效、有用的,适用于实际的监控任务。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccc8/7249100/932bad3a9833/sensors-20-02689-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验