School of Computing and Engineering, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK.
Sensors (Basel). 2020 May 9;20(9):2692. doi: 10.3390/s20092692.
In this study, we propose a methodology for the identification of potential fault occurrences of railway point-operating machines, using unlabeled signal sensor data. Data supplied by Network Rail, UK, is processed using a fast Fourier transform signal processing approach, coupled with the mean and max current levels to identify potential faults in point-operating machines. The method developed can dynamically adapt to the behavioral characteristics of individual point-operating machines, thereby providing bespoke condition monitoring capabilities in situ and in real time. The work described in this paper is not unique to railway point-operating machines, rather the data pre-processing and methodology is readily applicable to any motorized device fitted with current sensing capabilities. The novelty of our approach is that it does not require pre-labelled data with historical fault occurrences and therefore closely resembles problems of the real world, with application for smart city infrastructure. Lastly, we demonstrate the problems faced with handling such data and the capability of our methodology to dynamically adapt to diverse data presentations.
在这项研究中,我们提出了一种使用未标记信号传感器数据识别铁路道岔操作机潜在故障的方法。使用英国 Network Rail 提供的数据,通过快速傅里叶变换信号处理方法结合平均电流和最大电流水平来识别道岔操作机中的潜在故障。所开发的方法可以动态适应各个道岔操作机的行为特征,从而提供现场和实时的定制状态监测能力。本文描述的工作不仅限于铁路道岔操作机,而是数据预处理和方法非常适用于任何配备电流感应功能的电动设备。我们方法的新颖之处在于它不需要具有历史故障发生的预标记数据,因此非常类似于现实世界的问题,适用于智慧城市基础设施。最后,我们展示了处理此类数据所面临的问题以及我们的方法动态适应不同数据表示的能力。