School of Instrumentation Science and Opto-electronics Engineering, Beihang University, 37, Xueyuan Road, Haidian District, Beijing 100083, China.
State Key Laboratory of Internet of Things for Smart City Faculty of Science and Technology, University of Macau, Macau SAR 999078, China.
Sensors (Basel). 2020 Oct 1;20(19):5633. doi: 10.3390/s20195633.
In this paper, we propose a novel method for fault diagnosis in micro-electromechanical system (MEMS) inertial sensors using a bidirectional long short-term memory (BLSTM)-based Hilbert-Huang transform (HHT) and a convolutional neural network (CNN). First, the method for fault diagnosis of inertial sensors is formulated into an HHT-based deep learning problem. Second, we present a new BLSTM-based empirical mode decomposition (EMD) method for converting one-dimensional inertial data into two-dimensional Hilbert spectra. Finally, a CNN is used to perform fault classification tasks that use time-frequency HHT spectrums as input. According to our experimental results, significantly improved performance can be achieved, on average, for the proposed BLSTM-based EMD algorithm in terms of EMD computational efficiency compared with state-of-the-art algorithms. In addition, the proposed fault diagnosis method achieves high accuracy in fault classification.
在本文中,我们提出了一种使用基于双向长短期记忆(BLSTM)的希尔伯特-黄变换(HHT)和卷积神经网络(CNN)的微机电系统(MEMS)惯性传感器故障诊断的新方法。首先,将惯性传感器的故障诊断方法公式化为基于 HHT 的深度学习问题。其次,我们提出了一种新的基于 BLSTM 的经验模态分解(EMD)方法,用于将一维惯性数据转换为二维希尔伯特谱。最后,使用 CNN 执行使用时频 HHT 谱作为输入的故障分类任务。根据我们的实验结果,与最先进的算法相比,所提出的基于 BLSTM 的 EMD 算法在 EMD 计算效率方面平均可以实现显著的性能提升。此外,所提出的故障诊断方法在故障分类方面具有很高的准确性。