Arjona Laura, Landaluce Hugo, Perallos Asier, Onieva Enrique
Paul G. Allen Center for Computer Science and Engineering, University of Washington, Seattle, WA 98195, USA.
Faculty of Engineering, University of Deusto, 48007 Bilbao, Spain.
Sensors (Basel). 2020 May 9;20(9):2696. doi: 10.3390/s20092696.
The current growing demand for low-cost edge devices to bridge the physical-digital divide has triggered the growing scope of Radio Frequency Identification (RFID) technology research. Besides object identification, researchers have also examined the possibility of using RFID tags for low-power wireless sensing, localisation and activity inference. This paper focuses on passive UHF RFID sensing. An RFID system consists of a reader and various numbers of tags, which can incorporate different kinds of sensors. These sensor tags require fast anti-collision protocols to minimise the number of collisions with the other tags sharing the reader's interrogation zone. Therefore, RFID application developers must be mindful of anti-collision protocols. Dynamic Frame Slotted Aloha (DFSA) anti-collision protocols have been used extensively in the literature because EPCglobal Class 1 Generation 2 (EPC C1G2), which is the current communication protocol standard in RFID, employs this strategy. Protocols under this category are distinguished by their policy for updating the transmission frame size. This paper analyses the frame size update policy of DFSA strategies to survey and classify the main state-of-the-art of DFSA protocols according to their policy. Consequently, this paper proposes a novel policy to lower the time to read one sensor data packet compared to existing strategies. Next, the novel anti-collision protocol Fuzzy Frame Slotted Aloha (FFSA) is presented, which applies this novel DFSA policy. The results of our simulation confirm that FFSA significantly decreases the sensor tag read time for a wide range of tag populations when compared to earlier DFSA protocols thanks to the proposed frame size update policy.
当前,对低成本边缘设备以弥合物理数字鸿沟的需求不断增长,这引发了射频识别(RFID)技术研究范围的不断扩大。除了物体识别之外,研究人员还研究了使用RFID标签进行低功耗无线传感、定位和活动推理的可能性。本文重点关注无源超高频RFID传感。一个RFID系统由一个阅读器和多个标签组成,这些标签可以集成不同类型的传感器。这些传感器标签需要快速的防冲突协议,以尽量减少与共享阅读器询问区域的其他标签发生冲突的次数。因此,RFID应用开发者必须注意防冲突协议。动态帧时隙Aloha(DFSA)防冲突协议在文献中已被广泛使用,因为EPCglobal Class 1 Generation 2(EPC C1G2),即RFID当前的通信协议标准,采用了这种策略。这类协议的区别在于它们更新传输帧大小的策略。本文分析了DFSA策略的帧大小更新策略,以便根据其策略对DFSA协议的主要技术现状进行调查和分类。因此,本文提出了一种新颖的策略,与现有策略相比,可缩短读取一个传感器数据包的时间。接下来,提出了新颖的防冲突协议模糊帧时隙Aloha(FFSA),它应用了这种新颖的DFSA策略。我们的仿真结果证实,由于所提出的帧大小更新策略,与早期的DFSA协议相比,FFSA在广泛的标签数量范围内显著减少了传感器标签的读取时间。