文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

嵌合抗原受体的铰链和跨膜结构域调节受体表达和信号转导阈值。

Hinge and Transmembrane Domains of Chimeric Antigen Receptor Regulate Receptor Expression and Signaling Threshold.

机构信息

Project for Vaccine and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan.

出版信息

Cells. 2020 May 9;9(5):1182. doi: 10.3390/cells9051182.


DOI:10.3390/cells9051182
PMID:32397414
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7291079/
Abstract

Chimeric antigen receptor (CAR)-T cells have demonstrated significant clinical potential; however, their strong antitumor activity may cause severe adverse effects. To ensure efficacy and safe CAR-T cell therapy, it is important to understand CAR's structure-activity relationship. To clarify the role of hinge and transmembrane domains in CAR and CAR-T cell function, we generated different chimeras and analyzed their expression levels and antigen-specific activity on CAR-T cells. First, we created a basic CAR with hinge, transmembrane, and signal transduction domains derived from CD3ζ, then we generated six CAR variants whose hinge or hinge/transmembrane domains originated from CD4, CD8α, and CD28. CAR expression level and stability on the T cell were greatly affected by transmembrane rather than hinge domain. Antigen-specific functions of most CAR-T cells depended on their CAR expression levels. However, CARs with a CD8α- or CD28-derived hinge domain showed significant differences in CAR-T cell function, despite their equal expression levels. These results suggest that CAR signaling intensity into T cells was affected not only by CAR expression level, but also by the hinge domain. Our discoveries indicate that the hinge domain regulates the CAR signaling threshold and the transmembrane domain regulates the amount of CAR signaling via control of CAR expression level.

摘要

嵌合抗原受体 (CAR)-T 细胞已显示出显著的临床潜力;然而,其强大的抗肿瘤活性可能会引起严重的不良反应。为了确保 CAR-T 细胞治疗的疗效和安全性,了解 CAR 的结构-活性关系非常重要。为了阐明铰链和跨膜结构域在 CAR 和 CAR-T 细胞功能中的作用,我们构建了不同的嵌合体,并分析了它们在 CAR-T 细胞上的表达水平和抗原特异性活性。首先,我们构建了一个基本的 CAR,其铰链、跨膜和信号转导结构域来源于 CD3ζ,然后我们构建了六个 CAR 变体,其铰链或铰链/跨膜结构域来源于 CD4、CD8α 和 CD28。跨膜结构域而非铰链结构域极大地影响了 T 细胞上 CAR 的表达水平和稳定性。大多数 CAR-T 细胞的抗原特异性功能取决于其 CAR 的表达水平。然而,源自 CD8α 或 CD28 的铰链域的 CAR 尽管表达水平相等,但在 CAR-T 细胞功能上表现出显著差异。这些结果表明,CAR 信号转导进入 T 细胞不仅受到 CAR 表达水平的影响,还受到铰链结构域的影响。我们的发现表明,铰链结构域调节 CAR 信号的阈值,而跨膜结构域通过控制 CAR 的表达水平来调节 CAR 信号的量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d010/7291079/d63487e5ef29/cells-09-01182-g005a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d010/7291079/f635b0d391de/cells-09-01182-g001a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d010/7291079/c83beab46bd2/cells-09-01182-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d010/7291079/e9d3f52677c2/cells-09-01182-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d010/7291079/873c7c0c3caa/cells-09-01182-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d010/7291079/d63487e5ef29/cells-09-01182-g005a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d010/7291079/f635b0d391de/cells-09-01182-g001a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d010/7291079/c83beab46bd2/cells-09-01182-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d010/7291079/e9d3f52677c2/cells-09-01182-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d010/7291079/873c7c0c3caa/cells-09-01182-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d010/7291079/d63487e5ef29/cells-09-01182-g005a.jpg

相似文献

[1]
Hinge and Transmembrane Domains of Chimeric Antigen Receptor Regulate Receptor Expression and Signaling Threshold.

Cells. 2020-5-9

[2]
Function of Novel Anti-CD19 Chimeric Antigen Receptors with Human Variable Regions Is Affected by Hinge and Transmembrane Domains.

Mol Ther. 2017-7-27

[3]
Modification of Hinge/Transmembrane and Signal Transduction Domains Improves the Expression and Signaling Threshold of GXMR-CAR Specific to spp.

Cells. 2022-10-26

[4]
Structure of the Signal Transduction Domain in Second-Generation CAR Regulates the Input Efficiency of CAR Signals.

Int J Mol Sci. 2021-3-1

[5]
Phosphoproteomic analysis of chimeric antigen receptor signaling reveals kinetic and quantitative differences that affect cell function.

Sci Signal. 2018-8-21

[6]
Antigen-independent activation is critical for the durable antitumor effect of GUCY2C-targeted CAR-T cells.

J Immunother Cancer. 2024-10-4

[7]
Design and Assessment of Novel Anti-CD30 Chimeric Antigen Receptors with Human Antigen-Recognition Domains.

Hum Gene Ther. 2021-7

[8]
Incorporation of a hinge domain improves the expansion of chimeric antigen receptor T cells.

J Hematol Oncol. 2017-3-13

[9]
CD28 hinge used in chimeric antigen receptor (CAR) T-cells exhibits local structure and conformational exchange amidst global disorder.

Commun Biol. 2024-8-31

[10]
The CD28-Transmembrane Domain Mediates Chimeric Antigen Receptor Heterodimerization With CD28.

Front Immunol. 2021

引用本文的文献

[1]
Tracing the development of CAR-T cell design: from concept to next-generation platforms.

Front Immunol. 2025-7-17

[2]
CAR T-cell immunotherapy as the next horizon in cancer eradication: current landscape, challenges, and future directions.

Med Oncol. 2025-8-6

[3]
CAR T-cells meet autoimmune neurological diseases: a new dawn for therapy.

Front Immunol. 2025-7-18

[4]
Research progress on chimeric antigen receptor-based immunotherapy against autoimmune diseases.

Hum Vaccin Immunother. 2025-12

[5]
Targets for CAR Therapy in Multiple Myeloma.

Int J Mol Sci. 2025-6-24

[6]
CD2 augmentation enhances CAR-T-cell efficacy via immunological synapse remodeling and T-cell exhaustion mitigation.

Cell Mol Immunol. 2025-7-4

[7]
A universal chimeric antigen receptor (CAR)-fragment antibody binder (FAB) split system for cancer immunotherapy.

Sci Adv. 2025-7-4

[8]
Cell-Based Therapies for Solid Tumors: Challenges and Advances.

Int J Mol Sci. 2025-6-9

[9]
Transitioning from native to synthetic receptors: broadening T-cell engineering and beyond.

Cell Mol Immunol. 2025-6-6

[10]
Advances and challenges in CAR-T cell therapy for head and neck squamous cell carcinoma.

Biomark Res. 2025-5-1

本文引用的文献

[1]
Impact of scFv structure in chimeric antigen receptor on receptor expression efficiency and antigen recognition properties.

Biochem Biophys Res Commun. 2020-6-25

[2]
Advancing CAR T-Cell Therapy for Solid Tumors: Lessons Learned from Lymphoma Treatment.

Cancers (Basel). 2020-1-3

[3]
Parallel Comparison of 4-1BB or CD28 Co-stimulated CD19-Targeted CAR-T Cells for B Cell Non-Hodgkin's Lymphoma.

Mol Ther Oncolytics. 2019-8-28

[4]
Limitations in the Design of Chimeric Antigen Receptors for Cancer Therapy.

Cells. 2019-5-17

[5]
Combined CD28 and 4-1BB Costimulation Potentiates Affinity-tuned Chimeric Antigen Receptor-engineered T Cells.

Clin Cancer Res. 2019-7-1

[6]
Engineering and Design of Chimeric Antigen Receptors.

Mol Ther Methods Clin Dev. 2018-12-31

[7]
Chimeric Antigen Receptor Therapy.

N Engl J Med. 2018-7-5

[8]
Chimeric antigen receptor T cell (CAR-T) immunotherapy for solid tumors: lessons learned and strategies for moving forward.

J Hematol Oncol. 2018-2-13

[9]
Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia.

N Engl J Med. 2018-2-1

[10]
Enhancing CAR T cell persistence through ICOS and 4-1BB costimulation.

JCI Insight. 2018-1-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索