Joghee Shalini Halan, Uthandi Kamachi Mudali, Singh Nimmi, Katti Sanjeev, Kumar Peeyush, Renganayagalu Ravi Kottan, Pullithadathil Biji
Nanotech Research, Innovation and Incubation Center, PSG Institute of Advanced Studies, Coimbatore 641 004, India.
Department of Atomic Energy, Heavy Water Board, Mumbai 400094, India.
Langmuir. 2020 Jun 16;36(23):6352-6364. doi: 10.1021/acs.langmuir.0c00368. Epub 2020 Jun 4.
Interaction of water on heterogeneous nonwetting interfaces has fascinated researchers' attention for wider applications. Herein, we report the evolution of hierarchical micro-/nanostructures on superhydrophobic pseudoboehmite surfaces created from amorphous AlO films and unraveled their temperature-driven wettability and surface energy properties. The influence of hot water immersion temperature on the dissolution-reprecipitation mechanism and the surface geometry of the AlO film have been extensively analyzed, which helped in attaining the optimal Cassie-Baxter state. The evolution of pseudoboehmite films has been structurally characterized using grazing incidence X-ray diffraction, field-emission scanning electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy and atomic force microscopy. Interfacial surface energy components on the structured superhydrophobic surface exhibited a very low surface energy of ∼4.6 mN/m at room temperature and ultrahigh water contact angle >175°. The interaction between water droplets on the nonwetting surface was comprehended and correlated to the temperature-dependent surface energy properties. The surface energy and wettability of the structured pseudoboehmite superhydrophobic surface exhibited an inverse behavior as a function of temperature. Interestingly, the superhydrophobic surface exhibited "Leidenfrost effect" below the boiling point of water (67 °C), which is further correlated with the intermolecular forces, interfacial water molecules and surface-terminated groups. These high-temperature wetting transition studies could be potentially valuable for solid-liquid systems working at nonambient temperatures, and also this approach can pave new pathways for better understanding of the solid/liquid interfacial interactions on nanoengineered superhydrophobic surfaces.
水在异质非润湿界面上的相互作用因其广泛的应用而吸引了研究人员的关注。在此,我们报告了由非晶态AlO薄膜制备的超疏水拟薄水铝石表面上分级微/纳米结构的演变,并揭示了其温度驱动的润湿性和表面能特性。深入分析了热水浸泡温度对AlO薄膜溶解-再沉淀机制和表面几何形状的影响,这有助于实现最佳的Cassie-Baxter状态。使用掠入射X射线衍射、场发射扫描电子显微镜、高分辨率透射电子显微镜、X射线光电子能谱和原子力显微镜对拟薄水铝石薄膜的演变进行了结构表征。结构化超疏水表面上的界面表面能组分在室温下表现出非常低的表面能,约为4.6 mN/m,水接触角超高,大于175°。理解了非润湿表面上水滴之间的相互作用,并将其与温度依赖的表面能特性相关联。结构化拟薄水铝石超疏水表面的表面能和润湿性表现出与温度成反比的行为。有趣的是,超疏水表面在水的沸点(67°C)以下表现出“莱顿弗罗斯特效应”,这进一步与分子间力、界面水分子和表面端基相关。这些高温润湿转变研究对于在非环境温度下工作的固液系统可能具有潜在价值,而且这种方法可以为更好地理解纳米工程超疏水表面上的固/液界面相互作用开辟新途径。