Odugbemi Adeshina I, Nyirenda Clement, Christoffels Alan, Egieyeh Samuel A
South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, Cape Town 7535, South Africa.
School of Pharmacy, University of the Western Cape, Bellville, Cape Town 7535, South Africa.
Comput Struct Biotechnol J. 2024 Jul 6;23:2964-2977. doi: 10.1016/j.csbj.2024.07.003. eCollection 2024 Dec.
Artificial Intelligence is transforming drug discovery, particularly in the hit identification phase of therapeutic compounds. One tool that has been instrumental in this transformation is Quantitative Structure-Activity Relationship (QSAR) analysis. This computer-aided drug design tool uses machine learning to predict the biological activity of new compounds based on the numerical representation of chemical structures against various biological targets. With diabetes mellitus becoming a significant health challenge in recent times, there is intense research interest in modulating antidiabetic drug targets. α-Glucosidase is an antidiabetic target that has gained attention due to its ability to suppress postprandial hyperglycaemia, a key contributor to diabetic complications. This review explored a detailed approach to developing QSAR models, focusing on strategies for generating input variables (molecular descriptors) and computational approaches ranging from classical machine learning algorithms to modern deep learning algorithms. We also highlighted studies that have used these approaches to develop predictive models for α-glucosidase inhibitors to modulate this critical antidiabetic drug target.
人工智能正在改变药物发现过程,尤其是在治疗性化合物的先导化合物识别阶段。在这一转变过程中发挥了重要作用的一种工具是定量构效关系(QSAR)分析。这种计算机辅助药物设计工具利用机器学习,根据化学结构针对各种生物靶点的数值表示来预测新化合物的生物活性。近年来,糖尿病已成为一项重大的健康挑战,因此对于调节抗糖尿病药物靶点有着浓厚的研究兴趣。α-葡萄糖苷酶是一种抗糖尿病靶点,因其能够抑制餐后高血糖(糖尿病并发症的一个关键因素)而受到关注。本综述探讨了开发QSAR模型的详细方法,重点关注生成输入变量(分子描述符)的策略以及从经典机器学习算法到现代深度学习算法的计算方法。我们还强调了一些研究,这些研究利用这些方法开发了用于α-葡萄糖苷酶抑制剂的预测模型,以调节这一关键的抗糖尿病药物靶点。