Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria.
Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria.
Mol Biol Evol. 2020 Sep 1;37(9):2630-2640. doi: 10.1093/molbev/msaa116.
Neuronal activity is temperature sensitive and affects behavioral traits important for individual fitness, such as locomotion and courtship. Yet, we do not know enough about the evolutionary response of neuronal phenotypes in new temperature environments. Here, we use long-term experimental evolution of Drosophila simulans populations exposed to novel temperature regimes. Here, we demonstrate a direct relationship between thermal selective pressure and the evolution of neuronally expressed molecular and behavioral phenotypes. Several essential neuronal genes evolve lower expression at high temperatures and higher expression at low temperatures, with dopaminergic neurons standing out by displaying the most consistent expression change across independent replicates. We functionally validate the link between evolved gene expression and behavioral changes by pharmacological intervention in the experimentally evolved D. simulans populations as well as by genetically triggered expression changes of key genes in D. melanogaster. As natural temperature clines confirm our results for Drosophila and Anopheles populations, we conclude that neuronal dopamine evolution is a key factor for temperature adaptation.
神经元活动对温度敏感,并影响个体适应能力的重要行为特征,如运动和求偶。然而,我们对于新环境温度下神经元表型的进化反应还知之甚少。在这里,我们利用果蝇 simulans 种群在新温度环境下的长期实验进化来研究这个问题。结果表明,热选择压力与神经元表达的分子和行为表型的进化之间存在直接关系。一些重要的神经元基因在高温下的表达降低,在低温下的表达升高,其中多巴胺能神经元表现出最一致的表达变化,在独立重复实验中都有体现。我们通过对实验进化的 D. simulans 种群进行药理学干预以及在 D. melanogaster 中遗传触发关键基因的表达变化,对进化的基因表达与行为变化之间的联系进行了功能验证。由于自然温度梯度证实了我们在果蝇和按蚊种群中的结果,我们得出结论,神经元多巴胺的进化是温度适应的关键因素。