Empa, Swiss Laboratories for Materials Science and Technology, Laboratory for Particles-Biology Interactions, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland.
Small. 2020 Sep;16(36):e1907650. doi: 10.1002/smll.201907650. Epub 2020 May 13.
More than a decade has passed since the first concepts of predictive nanotoxicology were formulated. During this time, many advancements have been achieved in multiple disciplines, including the success stories of the fiber paradigm and the oxidative stress paradigm. However, important knowledge gaps are slowing down the development of predictive nanotoxicology and require a mutidisciplinary effort to be overcome. Among these gaps, understanding, reproducing, and modeling of nanomaterial biotransformation in biological environments is a central challenge, both in vitro and in silico. This dynamic and complex process is still a challenge for today's bioanalytics. This work explores and discusses selected approaches of the multidisciplinary efforts taken in the last decade and the challenges that remain unmet, in particular concerning nanomaterial biotransformation. It highlights some future advancements that, together, can help to understand such complex processes and accelerate the development of predictive nanotoxicology.
自提出预测性纳米毒理学的最初概念以来,已经过去了十多年。在这段时间里,多个学科都取得了许多进展,包括纤维范式和氧化应激范式的成功案例。然而,重要的知识差距正在减缓预测性纳米毒理学的发展,需要多学科的努力来克服。在这些差距中,理解、复制和模拟生物环境中的纳米材料生物转化是一个核心挑战,无论是在体外还是在计算中。这个动态而复杂的过程仍然是当今生物分析学的一个挑战。这项工作探讨并讨论了过去十年中多学科努力所采取的选定方法,以及仍然未解决的挑战,特别是关于纳米材料生物转化的挑战。它强调了一些未来的进展,这些进展共同有助于理解这些复杂的过程,并加速预测性纳米毒理学的发展。