Pereira Higor Sette, E Almeida Ludmila Tavares, Fernandes Vitória, Senra Renato Lima, Fontes Patrícia Pereira, Bittar Eustáquio Resende, Ribon Andréa de Oliveira Barros, Rotta Polyana Pizzi, Menezes-Souza Daniel, Bittar Joely Ferreira Figueiredo, Mendes Tiago Antônio de Oliveira
Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
Departamento de Medicina Veterinária, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
J Clin Microbiol. 2020 Jun 24;58(7). doi: 10.1128/JCM.01343-19.
Neosporosis has become a concern since it is associated with abortion in cattle. Currently, diagnosis is determined through anamnesis, evaluation of the history, and perception of the clinical signs of the herd. There is no practical and noninvasive test adapted to a large number of samples, which represents a gap for the use of new approaches that provide information about infections and the risks of herds. Here, we performed a search in the genome by linear B-cell epitopes using immunoinformatic tools aiming to develop a chimeric protein with high potential to bind specifically to antibodies from infected cattle samples. An enzyme-linked immunosorbent assay with the new chimeric antigen was developed and tested with sera from natural field -infected bovines. The cross-reactivity of the new antigen was also evaluated using sera from bovines infected by other abortive pathogens, including , sp., , and , and enzootic bovine leucosis caused by bovine leukemia virus, as well as with samples of animals infected with The assay using the chimeric protein showed 96.6% ± 3.4% of sensitivity in comparison to healthy animal sera. Meanwhile, in relation to false-positive results provided by cross-reactivity with others pathogens, the specificity value was 97.0% ± 2.9%. In conclusion, immunoinformatic tools provide an efficient platform to build an accurate protein to diagnose bovine neosporosis based on serum samples.
新孢子虫病已成为一个令人担忧的问题,因为它与牛的流产有关。目前,诊断是通过问诊、病史评估以及对牛群临床症状的观察来确定的。尚无适用于大量样本的实用且非侵入性的检测方法,这对于采用能提供有关感染及牛群风险信息的新方法而言是一个空白。在此,我们利用免疫信息学工具在基因组中搜索线性B细胞表位,旨在开发一种具有高潜力的嵌合蛋白,使其能特异性结合来自感染牛样本的抗体。我们开发了一种使用新嵌合抗原的酶联免疫吸附测定法,并使用来自自然感染牛的血清进行了测试。还使用来自感染其他流产病原体(包括 、 种、 、 )的牛的血清,以及由牛白血病病毒引起的地方流行性牛白血病的血清,连同感染 的动物样本,评估了新抗原的交叉反应性。与健康动物血清相比,使用嵌合蛋白的测定法显示出96.6%±3.4%的敏感性。同时,就与其他病原体交叉反应产生的假阳性结果而言,特异性值为97.0%±2.9%。总之,免疫信息学工具为构建基于血清样本诊断牛新孢子虫病的准确蛋白提供了一个有效平台。