Suppr超能文献

用于生物组织分类的去极化度量空间。

Depolarization metric spaces for biological tissues classification.

机构信息

Grup d'Òptica, Physics Department, Universitat Autònoma de Barcelona, Bellaterra, Spain.

LPICM, CNRS, École Polytechnique, Université Paris-Saclay, Palaiseau, France.

出版信息

J Biophotonics. 2020 Aug;13(8):e202000083. doi: 10.1002/jbio.202000083. Epub 2020 May 25.

Abstract

Classification of tissues is an important problem in biomedicine. An efficient tissue classification protocol allows, for instance, the guided-recognition of structures through treated images or discriminating between healthy and unhealthy regions (e.g., early detection of cancer). In this framework, we study the potential of some polarimetric metrics, the so-called depolarization spaces, for the classification of biological tissues. The analysis is performed using 120 biological ex vivo samples of three different tissues types. Based on these data collection, we provide for the first time a comparison between these depolarization spaces, as well as with most commonly used depolarization metrics, in terms of biological samples discrimination. The results illustrate the way to determine the set of depolarization metrics which optimizes tissue classification efficiencies. In that sense, the results show the interest of the method which is general, and which can be applied to study multiple types of biological samples, including of course human tissues. The latter can be useful for instance, to improve and to boost applications related to optical biopsy.

摘要

组织分类是生物医学中的一个重要问题。高效的组织分类协议允许通过处理后的图像进行结构的引导识别,或者区分健康和不健康的区域(例如,癌症的早期检测)。在这个框架中,我们研究了一些偏振度量的潜力,即所谓的去偏振空间,用于生物组织的分类。分析使用了三种不同组织类型的 120 个生物离体样本进行。基于这些数据收集,我们首次在生物样本的区分方面比较了这些去偏振空间以及最常用的去偏振度量。结果说明了确定优化组织分类效率的去偏振度量集的方法。从这个意义上说,结果表明该方法具有通用性,可以应用于研究多种类型的生物样本,包括当然还有人体组织。例如,这对于提高和推动与光学活检相关的应用很有帮助。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验