Solaris National Synchrotron Radiation Centre, Jagiellonian University, Krakow, Poland.
School of Physics and Astronomy, University of Exeter, Exeter, UK.
J Biophotonics. 2020 Aug;13(8):e202000122. doi: 10.1002/jbio.202000122. Epub 2020 Jun 1.
The technical progress in fast quantum cascade laser (QCL) microscopy offers a platform where chemical imaging becomes feasible for clinical diagnostics. QCL systems allow the integration of previously developed FT-IR-based pathology recognition models in a faster workflow. The translation of such models requires a systematic approach, focusing only on the spectral frequencies that carry crucial information for discrimination of pathologic features. In this study, we optimize an FT-IR-based histopathological method for esophageal cancer detection to work with a QCL system. We explore whether the classifier's performance is affected by paraffin presence from tissue blocks compared to removing it chemically. Working with paraffin-embedded samples reduces preprocessing time in the lab and allows samples to be archived after analysis. Moreover, we test, whether the creation of a QCL model requires a preestablished FTIR model or can be optimized using solely QCL measurements.
快速量子级联激光(QCL)显微镜技术的进步为化学成像在临床诊断中的应用提供了一个平台。QCL 系统允许将以前基于傅里叶变换红外(FT-IR)的病理学识别模型集成到更快的工作流程中。这种模型的转换需要一种系统的方法,只关注携带区分病理特征关键信息的光谱频率。在这项研究中,我们优化了一种基于 FT-IR 的食管癌检测方法,使其能够与 QCL 系统配合使用。我们探讨了与化学去除相比,组织块中存在的石蜡是否会影响分类器的性能。使用石蜡包埋的样本可以减少实验室中的预处理时间,并允许在分析后对样本进行存档。此外,我们还测试了创建 QCL 模型是否需要预先建立的 FTIR 模型,或者是否可以仅使用 QCL 测量进行优化。