Suppr超能文献

通过气凝胶辅助铁在氮掺杂碳中的原子分散以实现高效氧还原

Assisting Atomic Dispersion of Fe in N-Doped Carbon by Aerosil for High-Efficiency Oxygen Reduction.

作者信息

Zhao Tete, Kumar Anuj, Xiong Xuya, Ma Mang, Wang Yiyan, Zhang Ying, Agnoli Stefano, Zhang Guoxin, Sun Xiaoming

机构信息

State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, P.R. China.

Department of Chemistry, Institute of Humanities and Applied Science, GLA University, Mathura 281406, India.

出版信息

ACS Appl Mater Interfaces. 2020 Jun 10;12(23):25832-25842. doi: 10.1021/acsami.0c04169. Epub 2020 May 28.

Abstract

Utilizing Zn as a "fencing" agent has enabled the pyrolytic synthesis of atomically dispersed metal-nitrogen-carbon (AD-MNC) materials for broad electrocatalysis such as fuel cells, metal-air batteries, and water electrolyzers. Yet the Zn residue troubles the precise identification of the responsible sites in active service. Herein we developed a simple aerosil-assisted method for preparing AD-MNC materials to cautiously avoid the introduction of Zn. The combined analysis of extended X-ray absorption fine structure (EXAFS) and aberration-corrected high-resolution transition electron microscopy verified the atomic dispersion of Fe species in the as-made Fe-NC sample with a well-defined structure of Fe-N. Besides, the EXAFS studies indicated the formation of oxygenated Fe-N moieties (O-Fe-N) after the removal of aerosil nanoparticles. Therefore, the immobilization of Fe atoms in the carbon substrate was attributed to the heavily doping N and rich oxygen dangling species at the aerosil surface. Electrochemical measurements revealed that the as-made Fe-NC material furnished with O-Fe-N moieties exhibited excellent oxygen reduction reaction (ORR) performance, characterized by individually indicating ∼22 mV higher half-wave potentials, with respect to commercial Pt/C catalyst. Density functional theory (DFT) computations suggested that the dangling oxygen ligand on the Fe-N moiety could significantly boost the cleavage of OOH* and the reductive release of *OH intermediates, leading to the enhancement of overall ORR performance.

摘要

利用锌作为“围栏”试剂实现了原子分散的金属-氮-碳(AD-MNC)材料的热解合成,可用于广泛的电催化,如燃料电池、金属空气电池和水电解槽。然而,锌残留物给实际应用中活性位点的精确识别带来了麻烦。在此,我们开发了一种简单的气凝胶辅助方法来制备AD-MNC材料,以谨慎避免引入锌。扩展X射线吸收精细结构(EXAFS)和像差校正高分辨率透射电子显微镜的联合分析证实了在制备的Fe-NC样品中Fe物种的原子分散,其具有明确的Fe-N结构。此外,EXAFS研究表明在去除气凝胶纳米颗粒后形成了氧化的Fe-N基团(O-Fe-N)。因此,Fe原子在碳基底中的固定归因于气凝胶表面大量掺杂的N和丰富的氧悬键物种。电化学测量表明,具有O-Fe-N基团的制备的Fe-NC材料表现出优异的氧还原反应(ORR)性能,其特征在于相对于商业Pt/C催化剂,半波电位分别高出约22 mV。密度泛函理论(DFT)计算表明,Fe-N基团上的悬键氧配体可以显著促进OOH的裂解和OH中间体的还原释放,从而提高整体ORR性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验