Dong Jun, Jiao Qiqi, Wang Hao, Wang Hong, Ren Yi-Ke
School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
China Rongtong Resources Development Group Co. Ltd., Beijing, 100081, China.
Heliyon. 2024 Dec 3;11(1):e40862. doi: 10.1016/j.heliyon.2024.e40862. eCollection 2025 Jan 15.
The shortcomings of precious metal based catalysts have limited the development of novel energies. So, developing low-cost and high performance transition metal based catalysts is one of the most feasible way to substitute the precious metal based catalysts. In all of the developed catalysts for oxygen reduction reactions (ORR), the iron-based nitrogen doped carbon nanotube (N-CNT) show great promise. In this paper, N-CNT with FeC encapsulated based catalysts (FeC@N-CNT) were synthesized. The encapsulation structure of FeC@N-CNT was confirmed by HAADF-STEM, XANES, XPS, XRD, SEM and other methods. XANES tests show that the doped nitrogen of FeC changed the length of Fe-C bond and furtherly influenced the electron transfer between encapsulated FeC and outer layer N-CNT. Electrochemical tests showed that the half-wave potential and onset potential ORR of 750 °C calcined FeC@N-CNT were 90 mV higher than that of 20 wt% Pt/C. The additional electric field between FeC and N-CNT modulated the C-N bond of surface N-CNT and enhanced the catalytic performance for ORR. This paper reveal that constructing encapsulated additional electron providing center is an effective way to design high performance catalysts.
基于贵金属的催化剂的缺点限制了新能源的发展。因此,开发低成本、高性能的过渡金属基催化剂是替代贵金属基催化剂最可行的方法之一。在所有已开发的用于氧还原反应(ORR)的催化剂中,铁基氮掺杂碳纳米管(N-CNT)显示出巨大的潜力。本文合成了具有FeC封装的N-CNT基催化剂(FeC@N-CNT)。通过高角度环形暗场扫描透射电子显微镜(HAADF-STEM)、X射线吸收近边结构(XANES)、X射线光电子能谱(XPS)、X射线衍射(XRD)、扫描电子显微镜(SEM)等方法证实了FeC@N-CNT的封装结构。XANES测试表明,FeC中掺杂的氮改变了Fe-C键的长度,进而影响了封装的FeC与外层N-CNT之间的电子转移。电化学测试表明,750℃煅烧的FeC@N-CNT的ORR半波电位和起始电位比20wt%的Pt/C高90mV。FeC与N-CNT之间的附加电场调制了表面N-CNT的C-N键,增强了对ORR的催化性能。本文揭示了构建封装的附加电子提供中心是设计高性能催化剂的有效方法。