Suppr超能文献

从组织学图像自动重建周围神经束的三维结构。

Automatic three-dimensional reconstruction of fascicles in peripheral nerves from histological images.

机构信息

Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.

KITE, Toronto Rehab, University Health Network, Toronto, Ontario, Canada.

出版信息

PLoS One. 2020 May 14;15(5):e0233028. doi: 10.1371/journal.pone.0233028. eCollection 2020.

Abstract

Computational studies can be used to support the development of peripheral nerve interfaces, but currently use simplified models of nerve anatomy, which may impact the applicability of simulation results. To better quantify and model neural anatomy across the population, we have developed an algorithm to automatically reconstruct accurate peripheral nerve models from histological cross-sections. We acquired serial median nerve cross-sections from human cadaveric samples, staining one set with hematoxylin and eosin (H&E) and the other using immunohistochemistry (IHC) with anti-neurofilament antibody. We developed a four-step processing pipeline involving registration, fascicle detection, segmentation, and reconstruction. We compared the output of each step to manual ground truths, and additionally compared the final models to commonly used extrusions, via intersection-over-union (IOU). Fascicle detection and segmentation required the use of a neural network and active contours in H&E-stained images, but only simple image processing methods for IHC-stained images. Reconstruction achieved an IOU of 0.42±0.07 for H&E and 0.37±0.16 for IHC images, with errors partially attributable to global misalignment at the registration step, rather than poor reconstruction. This work provides a quantitative baseline for fully automatic construction of peripheral nerve models. Our models provided fascicular shape and branching information that would be lost via extrusion.

摘要

计算研究可用于支持周围神经接口的开发,但目前使用的是简化的神经解剖模型,这可能会影响模拟结果的适用性。为了更好地量化和模拟整个群体的神经解剖结构,我们开发了一种算法,可从组织学横截面上自动重建准确的周围神经模型。我们从人体尸体样本中获取了一系列正中神经横切面,一组用苏木精和伊红(H&E)染色,另一组用抗神经丝抗体进行免疫组织化学(IHC)染色。我们开发了一个包含注册、束检测、分割和重建四个步骤的处理流水线。我们将每个步骤的输出与手动的真实情况进行了比较,此外还通过交并比(IOU)将最终模型与常用的挤压法进行了比较。束检测和分割需要在 H&E 染色图像中使用神经网络和活动轮廓,而在 IHC 染色图像中仅需要使用简单的图像处理方法。重建在 H&E 图像中达到了 0.42±0.07 的 IOU,在 IHC 图像中达到了 0.37±0.16 的 IOU,误差部分归因于注册步骤中的全局失准,而不是重建效果不佳。这项工作为周围神经模型的全自动构建提供了一个定量基准。我们的模型提供了通过挤压会丢失的束状形状和分支信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31c7/7224505/411afcb6b5a4/pone.0233028.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验