Yan Liwei, Guo Yongze, Qi Jian, Zhu Qingtang, Gu Liqiang, Zheng Canbin, Lin Tao, Lu Yutong, Zeng Zitao, Yu Sha, Zhu Shuang, Zhou Xiang, Zhang Xi, Du Yunfei, Yao Zhi, Lu Yao, Liu Xiaolin
Department of Microsurgery and Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Center for Peripheral Nerve Tissue Engineering and Technology Research, Guangdong, Guangzhou 510080, PR China.
School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Computational Science, Guangzhou 510080, PR China.
J Neurosci Methods. 2017 Aug 1;287:58-67. doi: 10.1016/j.jneumeth.2017.06.009. Epub 2017 Jun 17.
The precise annotation and accurate identification of the topography of fascicles to the end organs are prerequisites for studying human peripheral nerves.
In this study, we present a feasible imaging method that acquires 3D high-resolution (HR) topography of peripheral nerve fascicles using an iodine and freeze-drying (IFD) micro-computed tomography (microCT) method to greatly increase the contrast of fascicle images.
The enhanced microCT imaging method can facilitate the reconstruction of high-contrast HR fascicle images, fascicle segmentation and extraction, feature analysis, and the tracing of fascicle topography to end organs, which define fascicle functions.
The complex intraneural aggregation and distribution of fascicles is typically assessed using histological techniques or MR imaging to acquire coarse axial three-dimensional (3D) maps. However, the disadvantages of histological techniques (static, axial manual registration, and data instability) and MR imaging (low-resolution) limit these applications in reconstructing the topography of nerve fascicles.
Thus, enhanced microCT is a new technique for acquiring 3D intraneural topography of the human peripheral nerve fascicles both to improve our understanding of neurobiological principles and to guide accurate repair in the clinic. Additionally, 3D microstructure data can be used as a biofabrication model, which in turn can be used to fabricate scaffolds to repair long nerve gaps.
准确标注和精确识别神经束至终末器官的局部解剖结构是研究人类周围神经的前提条件。
在本研究中,我们提出了一种可行的成像方法,即使用碘染及冻干(IFD)微计算机断层扫描(microCT)方法获取周围神经束的三维高分辨率(HR)局部解剖结构,以显著提高神经束图像的对比度。
增强型微CT成像方法有助于重建高对比度的HR神经束图像、进行神经束分割与提取、特征分析以及追踪神经束至终末器官的局部解剖结构,这些终末器官决定了神经束的功能。
神经束复杂的神经内聚集和分布通常使用组织学技术或磁共振成像来评估,以获取粗略的轴向三维(3D)图谱。然而,组织学技术(静态、轴向手动配准和数据不稳定性)和磁共振成像(低分辨率)的缺点限制了它们在重建神经束局部解剖结构方面的应用。
因此,增强型微CT是一种获取人类周围神经束三维神经内局部解剖结构的新技术,既能增进我们对神经生物学原理的理解,又能指导临床进行精确修复。此外,三维微观结构数据可作为生物制造模型,进而用于制造支架以修复长神经缺损。