Suppr超能文献

缩小带隙:高性能有机光伏的关键。

Narrowing the Band Gap: The Key to High-Performance Organic Photovoltaics.

作者信息

Cheng Pei, Yang Yang

机构信息

Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, California 90095, United States.

出版信息

Acc Chem Res. 2020 Jun 16;53(6):1218-1228. doi: 10.1021/acs.accounts.0c00157. Epub 2020 May 14.

Abstract

ConspectusOrganic photovoltaics (OPVs) have attracted considerable attention in the last two decades to overcome the terawatt energy challenge and serious environmental problems. During their early development, only wide-band-gap organic semiconductors were synthesized and employed as the active layer, mainly utilizing photons in the UV-visible region and yielding power conversion efficiencies (PCEs) lower than 5%. Afterward, considerable efforts were made to narrow the polymer donor band gap in order to utilize the infrared photons, which led to the enhancement of the PCE from 5% to 12% in about a decade. Since 2017, the study of narrow-band-gap non-fullerene acceptors helped usher in a new era in OPV research and boosted the achievable the PCE to 17% in only 3 years. In essence, the history of OPV development in the last 15 years can be summarized as an attempt to narrow the band gap of organic semiconductors and better position the energy levels. There are multiple benefits of a narrower band gap: (1) considerable infrared photons can be utilized, and as a result, the short-circuit current density can increase significantly; (2) the energy offset of the lowest unoccupied molecular orbital energy levels or highest occupied molecular orbital energy levels between the donor and acceptor can be reduced, which will reduce the open-circuit voltage loss by minimizing the loss caused by the donor/acceptor charge transfer state; (3) because of the unique molecular orbitals of organic semiconductors, the red-shifted absorption will induce high transmittance in the visible region, which is ideal for the rear subcells in tandem-junction OPVs and transparent OPVs.In this Account, we first summarize our work beginning in 2008 on the design and synthesis of narrow-band-gap polymer donors/non-fullerene acceptors. Several strategies for constructing these materials, including enhancing the intramolecular charge transfer effect and steric hindrance/energy level engineering are discussed. In this part, in addition to systematic analyses of the design of narrow-band-gap polymer donors based on BDT/TT or BDT/DPP, donors/acceptors based on the new donor moieties DTP or BZPT are discussed as well. Especially, we highlight our work on the first report on the narrow-band-gap acceptor Y1 (based on the new donor moiety BZPT), which pioneered the future development and usage of acceptors belonging to the Y1 family (or series). Subsequently, we analyze several reported certified world record single-junction or tandem-junction OPVs that use these narrow-band-gap donors or acceptors. We share our experiences and insights from a device perspective in terms of donor/acceptor selection, energy level alignment management, film morphology control, current matching of subcells, interconnecting layer construction, interface engineering, and device geometry selection. In this part, the construction of high-performance ternary-blend OPVs and transparent OPVs based on these narrow-band-gap donors/acceptors is also discussed. Finally, in order to push the field into the 20-25% high-efficiency era in the next few years, some suggestions to further develop narrow-band-gap donors/acceptors and related device technologies are proposed.

摘要

综述

在过去二十年里,有机光伏(OPV)为应对太瓦级能源挑战和严重的环境问题而备受关注。在其早期发展阶段,仅合成了宽带隙有机半导体并将其用作活性层,主要利用紫外 - 可见光区域的光子,功率转换效率(PCE)低于5%。此后,人们付出了巨大努力来缩小聚合物给体的带隙以利用红外光子,这使得PCE在大约十年内从5%提高到了12%。自2017年以来,窄带隙非富勒烯受体的研究开启了OPV研究的新时代,并仅在3年内就将可实现的PCE提高到了17%。从本质上讲,过去15年OPV的发展历程可概括为缩小有机半导体带隙并优化能级的尝试。较窄带隙有诸多益处:(1)可利用大量红外光子,从而显著提高短路电流密度;(2)可降低给体和受体之间最低未占据分子轨道能级或最高占据分子轨道能级的能量差,通过最小化给体/受体电荷转移态引起的损失来降低开路电压损失;(3)由于有机半导体独特的分子轨道,红移吸收会在可见光区域产生高透过率,这对于串联结OPV和透明OPV中的背侧子电池来说是理想的。

在本综述中,我们首先总结自2008年以来我们在窄带隙聚合物给体/非富勒烯受体的设计与合成方面的工作。讨论了构建这些材料的几种策略,包括增强分子内电荷转移效应以及空间位阻/能级工程。在这部分内容中,除了对基于BDT/TT或BDT/DPP的窄带隙聚合物给体设计进行系统分析外,还讨论了基于新给体基团DTP或BZPT的给体/受体。特别地,我们重点介绍了我们关于窄带隙受体Y1(基于新给体基团BZPT)的首次报道工作,该工作开创了Y1家族(或系列)受体的未来发展和应用。随后,我们分析了一些报道的使用这些窄带隙给体或受体的认证世界纪录单结或串联结OPV。我们从器件角度分享了在给体/受体选择、能级对齐管理、薄膜形态控制、子电池电流匹配、互连层构建、界面工程以及器件几何形状选择方面的经验和见解。在这部分内容中,还讨论了基于这些窄带隙给体/受体构建高性能三元共混OPV和透明OPV。最后,为了在未来几年将该领域推进到20 - 25%的高效时代,提出了一些进一步发展窄带隙给体/受体及相关器件技术的建议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验