Suppr超能文献

通过 NMR 和振动光谱学的联合使用阐明膜中磷脂的结构和动力学。

Structure and dynamics of phospholipids in membranes elucidated by combined use of NMR and vibrational spectroscopies.

机构信息

Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Japan; Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.

出版信息

Biochim Biophys Acta Biomembr. 2020 Sep 1;1862(9):183352. doi: 10.1016/j.bbamem.2020.183352. Epub 2020 May 11.

Abstract

NMR is a sophisticated method for investigation of structure and dynamics of lipid and protein molecules in membranes. Vibrational spectroscopy is also powerful because of relatively high resolution and sensitivity, and easier access than NMR. A combined use of these spectroscopies could provide important insights into the membrane biophysics. A structural analysis of phosphatidylethanolamine (PE) bilayers in built-up films by infrared dichroism suggested that polar groups oriented parallel to the membrane surface. A Raman analysis of phosphatidylcholine (PC) revealed that the gauche conformation was preferred for the choline backbone not only in solid, but also in the gel and liquid-crystalline states. The polar group structure of DPPC bilayers in the liquid-crystalline state was determined by analyzing deuterium quadrupole splitting of the choline group and phosphorus chemical shift anisotropy of the phosphate group in combination with restriction of the gauche conformation of the choline group determined by Raman spectroscopy. This was an excellent complementarity of NMR and vibrational spectroscopies. The deuterium quadrupole splitting values mentioned above were found to change on addition of ions such as NaCl, CaCl, and LaCl, suggesting that a structural change takes place on ion binding and the polar group of PC works as an electric charge sensor of membranes. The ion-bound structure was determined by NMR using the restriction from Raman spectroscopy. The PN vector of phosphorylcholine group was inclined by 63° from the membrane surface, while the inclination was 18° in the ion-free form. The deuterium quadrupole splitting values and phosphorus powder patterns revealed that on mixing with phosphatidylglycerol (PG) or cardiolipin (CL), PC did not change its dynamic structure of the glycerol backbone, but PE did. The mixture of PE with PG or CL shared a new dynamic structure, suggesting their adaptive miscibility in the molecular level. PC was molecularly immiscible with any of PE, PG, and CL. The molecular miscibility would regulate not only interactions of proteins with mixed bilayers but also formation of asymmetric lipid membranes. Interactions of crown-ether (CE) modified artificial microbial peptides with phospholipid bilayers were investigated by NMR and FTIR. CE-modified 14-mers with one or two basic amino acid residues revealed position-specific selectivity for the suppression of calcein leakage from PC vesicles but did not for that from PG vesicles, suggesting that structures of the lipid polar groups play crucial roles in different responses of the vesicles to the positively charged peptides. Manipulation of the peptide-polar group interaction can be used for drug design.

摘要

NMR 是一种用于研究膜中脂质和蛋白质分子结构和动力学的复杂方法。振动光谱因其相对较高的分辨率和灵敏度以及比 NMR 更容易获得而非常强大。这两种光谱的结合使用可以为膜生物物理学提供重要的见解。红外二色性对构建膜中磷脂酰乙醇胺(PE)双层的结构分析表明,极性基团平行于膜表面取向。对磷脂酰胆碱(PC)的拉曼分析表明,不仅在固态,而且在凝胶态和液晶态,胆碱骨架都优先采用 gauche 构象。通过分析胆碱基团的氘核四极分裂和磷酸基团的磷化学位移各向异性,并结合拉曼光谱确定的胆碱基团 gauche 构象的限制,确定了 DPPC 双层在液晶态下的极性基团结构。这是 NMR 和振动光谱的极好互补。上述氘核四极分裂值在添加 NaCl、CaCl 和 LaCl 等离子时发生变化,表明离子结合时会发生结构变化,PC 的极性基团作为膜的电荷传感器。使用拉曼光谱确定的限制,通过 NMR 确定了离子结合结构。磷酸胆碱基团的 PN 向量与膜表面倾斜 63°,而在无离子形式下倾斜 18°。氘核四极分裂值和磷粉末图谱表明,与磷脂酰甘油(PG)或心磷脂(CL)混合时,PC 没有改变甘油骨架的动态结构,但 PE 却改变了。PE 与 PG 或 CL 的混合物具有新的动态结构,表明它们在分子水平上具有适应性混合。PC 与任何一种 PE、PG 和 CL 都是分子不混溶的。分子混合不仅会调节蛋白质与混合双层的相互作用,还会调节不对称脂质双层的形成。通过 NMR 和 FTIR 研究了冠醚(CE)修饰的人工微生物肽与磷脂双层的相互作用。具有一个或两个碱性氨基酸残基的 CE 修饰的 14 聚体对抑制 calcein 从 PC 囊泡中漏出具有位置特异性选择性,但对 PG 囊泡没有,这表明脂质极性基团的结构在囊泡对带正电荷的肽的不同反应中起着关键作用。肽-极性基团相互作用的操纵可用于药物设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验