Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Regeneration, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, Hunan, 411104, China.
Aquat Toxicol. 2020 Jul;224:105496. doi: 10.1016/j.aquatox.2020.105496. Epub 2020 May 1.
Predicting the toxicity of organic toxicants to aquatic life through chemometric approach is challenging area. In this paper, a six-descriptor quantitative structure-activity/toxicity relationship (QSAR/QSTR) model was successfully developed for the toxicity pEC of organic chemicals against Pseudokirchneriella subcapitata, by applying support vector machine (SVM) together with genetic algorithm. A sufficiently large data set consisting of 334 organic chemicals was randomly divided into a training set (167 compounds) and a test set (167 compounds) with a ratio of 1:1. The optimal SVM model possesses coefficient of determination R of 0.76 and mean absolute error (MAE) of 0.60 for the training set and R of 0.75 and MAE of 0.61 for the test set. Compared with other models reported in the literature, our SVM model for the toxicity pEC shows significant statistical quality and satisfactory predictive ability, although it has fewer molecular descriptors and more samples in the test set. A QSTR model for pEC of organic chemicals against Pseudokirchneriella subcapitata was also developed with the same subsets and molecular descriptors.
通过化学计量学方法预测有机毒物对水生生物的毒性具有挑战性。本文采用支持向量机(SVM)与遗传算法相结合的方法,成功建立了有机化合物对斜生栅藻毒性的六描述符定量构效/毒性关系(QSAR/QSTR)模型。通过随机将一个包含 334 种有机化合物的大型数据集分为训练集(167 种化合物)和测试集(167 种化合物),比例为 1:1。最优 SVM 模型在训练集上的决定系数 R 为 0.76,平均绝对误差(MAE)为 0.60,在测试集上的 R 为 0.75,MAE 为 0.61。与文献中报道的其他模型相比,尽管我们的 SVM 模型用于预测有机化合物对斜生栅藻毒性的 pEC 时,测试集中的分子描述符更少,样本更多,但它具有显著的统计学质量和令人满意的预测能力。本文还采用相同的子集和分子描述符建立了有机化合物对斜生栅藻毒性的 pEC 定量构效关系模型。