Suppr超能文献

通过蒙特卡洛方法对有机化学品进行生态毒理学预测。 (原英文文本toward后缺少内容,翻译可能存在一定局限性,需根据完整准确的原文进一步完善)

Ecotoxicological prediction of organic chemicals toward by Monte Carlo approach.

作者信息

Lotfi Shahram, Ahmadi Shahin, Kumar Parvin

机构信息

Department of Chemistry, Payame Noor University (PNU) 19395-4697 Tehran Iran.

Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University Tehran Iran

出版信息

RSC Adv. 2022 Sep 1;12(38):24988-24997. doi: 10.1039/d2ra03936b. eCollection 2022 Aug 30.

Abstract

In the ecotoxicological risk assessment, acute toxicity is one of the most significant criteria. Green alga has been used for ecotoxicological studies to assess the toxicity of different toxic chemicals in freshwater. Quantitative Structure Activity Relationships (QSAR) are mathematical models to relate chemical structure and activity/physicochemical properties of chemicals quantitatively. Herein, Quantitative Structure Toxicity Relationship (QSTR) modeling is applied to assess the toxicity of a data set of 334 different chemicals on , in terms of EC and EC values. The QSTR models are established using CORAL software by utilizing the target function (TF) with the index of ideality of correlation (IIC). A hybrid optimal descriptor computed from SMILES and molecular hydrogen-suppressed graphs (HSG) is employed to construct QSTR models. The results of various statistical parameters of the QSTR model developed for pEC and pEC range from excellent to good and are in line with the standard parameters. The models prepared with IIC for Split 3 are chosen as the best model for both endpoints (pEC and pEC). The numerical value of the determination coefficient of the validation set of split 3 for the endpoint pEC is 0.7849 and for the endpoint pEC, it is 0.8150. The structural fractions accountable for the toxicity of chemicals are also extracted. The hydrophilic attributes like 1……(… and S…(…[double bond, length as m-dash]… exert positive contributions to controlling the aquatic toxicity and reducing algal toxicity, whereas attributes such as c…c…c…, C…C…C… enhance lipophilicity of the molecules and consequently enhance algal toxicity.

摘要

在生态毒理学风险评估中,急性毒性是最重要的标准之一。绿藻已被用于生态毒理学研究,以评估淡水环境中不同有毒化学物质的毒性。定量构效关系(QSAR)是用于定量关联化学物质的化学结构与活性/物理化学性质的数学模型。在此,应用定量结构毒性关系(QSTR)建模,根据EC和EC值评估334种不同化学物质数据集对……的毒性。通过使用具有相关性理想指数(IIC)的目标函数(TF),利用CORAL软件建立QSTR模型。采用从SMILES和分子氢抑制图(HSG)计算得到的混合最优描述符构建QSTR模型。为pEC和pEC建立的QSTR模型的各种统计参数结果从优秀到良好,符合标准参数。用IIC为分割3准备的模型被选为两个端点(pEC和pEC)的最佳模型。分割3验证集对于端点pEC的决定系数数值为0.7849,对于端点pEC为0.8150。还提取了对化学物质毒性有贡献的结构部分。像1……(…和S…(…[双键,长度为中划线]…这样的亲水性属性对控制水生毒性和降低藻类毒性有积极贡献,而像c…c…c…、C…C…C…这样的属性增强了分子的亲脂性,从而增强了藻类毒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6670/9434604/0e3b0597f5fe/d2ra03936b-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验