Suppr超能文献

基于氧化铁磁性纳米颗粒的低场磁共振测温法。

Iron oxide magnetic nanoparticles based low-field MR thermometry.

作者信息

Zhang Yapeng, Guo Silin, Zhang Pu, Zhong Jing, Liu Wenzhong

机构信息

School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China. Key Laboratory of Image Processing and Intelligent Control (Huazhong University of Science and Technology), Ministry of Education, Wuhan 430074, People's Republic of China.

出版信息

Nanotechnology. 2020 Aug 21;31(34):345101. doi: 10.1088/1361-6528/ab932b. Epub 2020 May 14.

Abstract

This paper reports on a highly accurate approach of magnetic resonance (MR) thermometry using iron oxide magnetic nanoparticles (MNPs) as temperature sensors. An empirical model for the description of the temperature dependent R relaxation rate is proposed by taking into account the temperature sensitivity of the MNP magnetization. The temperature sensitivity of the MNP magnetization (η) and the temperature sensitivity of the R relaxation rate (κ) are simulated with the proposed empirical models to investigate their dependence on the magnetic field and the particle size. Simulation results show the existence of optimal magnetic fields H and H that maximize the temperature sensitivities η and κ. Furthermore, simulations and experiments demonstrate that the optimal magnetic field H (H ) decreases with increasing the particle size. Experiments on temperature dependent R relaxation rate are performed at different magnetic fields for MNP samples with different iron concentrations. Experimental results show that the proposed MR thermometry using MNPs as temperature sensors allows a temperature estimation accuracy of about 0.05 °C. We believe that the achieved approach of highly accurate MR thermometry is of great interest and significance to biomedicine and biology.

摘要

本文报道了一种以氧化铁磁性纳米颗粒(MNPs)作为温度传感器的高精度磁共振(MR)测温方法。通过考虑MNP磁化强度的温度敏感性,提出了一个用于描述与温度相关的R弛豫率的经验模型。利用所提出的经验模型对MNP磁化强度的温度敏感性(η)和R弛豫率的温度敏感性(κ)进行了模拟,以研究它们对磁场和颗粒尺寸的依赖性。模拟结果表明存在使温度敏感性η和κ最大化的最佳磁场H和H。此外,模拟和实验表明,最佳磁场H(H)随着颗粒尺寸的增加而减小。针对不同铁浓度的MNP样品,在不同磁场下进行了与温度相关的R弛豫率实验。实验结果表明,所提出的以MNPs作为温度传感器的MR测温法能够实现约0.05℃的温度估计精度。我们认为,所实现的高精度MR测温方法对生物医学和生物学具有极大的吸引力和重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验