Suppr超能文献

一种基于磁性纳米粒子的高精度实时温度采集方法。

A High-Precision Real-Time Temperature Acquisition Method Based on Magnetic Nanoparticles.

作者信息

Zhu Yuchang, Ke Li, Wei Yijing, Zheng Xiao

机构信息

School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China.

CAS State Key Laboratory of Forest and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.

出版信息

Sensors (Basel). 2024 Dec 2;24(23):7716. doi: 10.3390/s24237716.

Abstract

The unique magnetothermal properties of magnetic nanoparticles enable the development of a high-precision, real-time, noninvasive temperature measurement method with significant potential in the biomedical field. Based on a low-frequency alternating magnetic field excitation model, we construct two additional magnetic field excitation models-alternating current-direct current superposition and dual-frequency superposition-to extract harmonic amplitude components from the magnetization response. To increase the accuracy of harmonic information acquisition, the effects of the truncation error, excitation magnetic field frequency, and amplitude are thoroughly analyzed, and optimal parameter values are selected to minimize the error. A single algorithm is designed for temperature inversion, and a joint algorithm is proposed to optimize the performance of the single algorithm. Under low-frequency alternating-current magnetic field excitation, the autonomous group particle swarm optimization method achieves superior real-time performance in terms of temperature inversion and running time. Compared with the opposition learning gray wolf optimizer and particle swarm optimization-gray wolf optimization, the proposed method achieves reductions of 52% and 68%, respectively. Additionally, under dual-frequency superimposed magnetic field excitation, a higher temperature inversion accuracy is achieved compared with that of the particle swarm optimization-gray wolf optimization algorithm, reducing the error from 0.237 K to 0.094 K.

摘要

磁性纳米颗粒独特的磁热特性使得一种高精度、实时、无创的温度测量方法得以发展,该方法在生物医学领域具有巨大潜力。基于低频交变磁场激励模型,我们构建了另外两种磁场激励模型——交流-直流叠加和双频叠加,以从磁化响应中提取谐波幅度分量。为提高谐波信息采集的准确性,我们深入分析了截断误差、激励磁场频率和幅度的影响,并选择了最优参数值以最小化误差。设计了一种用于温度反演的单一算法,并提出了一种联合算法以优化单一算法的性能。在低频交变磁场激励下,自主分组粒子群优化方法在温度反演和运行时间方面实现了卓越的实时性能。与反向学习灰狼优化器和粒子群优化-灰狼优化相比,所提方法分别实现了52%和68%的降幅。此外,在双频叠加磁场激励下,与粒子群优化-灰狼优化算法相比,实现了更高的温度反演精度,将误差从0.237 K降低至0.094 K。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验