Suppr超能文献

细胞修饰的生物打印微球用于血管再生。

Cell-modified bioprinted microspheres for vascular regeneration.

机构信息

Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, China.

State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, and Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310000, China.

出版信息

Mater Sci Eng C Mater Biol Appl. 2020 Jul;112:110896. doi: 10.1016/j.msec.2020.110896. Epub 2020 Mar 23.

Abstract

Cell therapy is a promising strategy in which living cells or cellular materials are delivered to treat a variety of diseases. Here, we developed an electrospray bioprinting method to rapidly generate cell-laden hydrogel microspheres, which limit the migration of the captured cells and provide an immunologically privileged microenvironment for cell survival in vivo. Currently, therapeutic angiogenesis aims to induce collateral vessel formation after limb ischemia. However, the clinical application of gene and cell therapy has been impeded by concerns regarding its inefficacy, as well as the associated risk of immunogenicity and oncogenicity. In this study, hydrogel microspheres encapsulating VEGF-overexpressing HEK293T cells showed good safety via subcutaneously injecting into male C57BL/6 mice. In addition, these cell-modified microspheres effectively promoted angiogenesis in a mouse hind-limb ischemia model. Therefore, we demonstrated the great therapeutic potential of this approach to induce angiogenesis in limb ischemia, indicating that bioprinting has a bright future in cell therapy.

摘要

细胞治疗是一种很有前途的策略,通过输送活细胞或细胞材料来治疗多种疾病。在这里,我们开发了一种电喷生物打印方法来快速生成细胞负载的水凝胶微球,限制了捕获细胞的迁移,并为细胞在体内的存活提供了免疫特惠的微环境。目前,治疗性血管生成旨在诱导肢体缺血后的侧支血管形成。然而,基因和细胞治疗的临床应用受到其疗效不佳以及免疫原性和致癌性相关风险的阻碍。在这项研究中,通过皮下注射到雄性 C57BL/6 小鼠中,包封过表达 VEGF 的 HEK293T 细胞的水凝胶微球显示出良好的安全性。此外,这些细胞修饰的微球有效地促进了小鼠后肢缺血模型中的血管生成。因此,我们证明了这种诱导肢体缺血血管生成的方法具有巨大的治疗潜力,表明生物打印在细胞治疗中有广阔的前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验