Centre de Biophysique Moléculaire, CNRS, Rue Charles Sadron, 45071, Orléans, France.
Université d'Orléans, Póle de Physique, 45071, Orléans, France.
Sci Rep. 2020 May 14;10(1):7992. doi: 10.1038/s41598-020-64646-5.
The last decade has witnessed a swiftly increasing interest in the design and production of novel multivalent molecules as powerful alternatives for conventional antibodies in the fight against cancer and infectious diseases. However, while it is widely accepted that large-scale flexibility (10-100 nm) and free/constrained dynamics (100 ns -μs) control the activity of such novel molecules, computational strategies at the mesoscale still lag behind experiments in optimizing the design of crucial features, such as the binding cooperativity (a.k.a. avidity). In this study, we introduced different coarse-grained models of a polymer-linked, two-nanobody composite molecule, with the aim of laying down the physical bases of a thorough computational drug design protocol at the mesoscale. We show that the calculation of suitable potentials of mean force allows one to apprehend the nature, range and strength of the thermodynamic forces that govern the motion of free and wall-tethered molecules. Furthermore, we develop a simple computational strategy to quantify the encounter/dissociation dynamics between the free end of a wall-tethered molecule and the surface, at the roots of binding cooperativity. This procedure allows one to pinpoint the role of internal flexibility and weak non-specific interactions on the kinetic constants of the nanobody-wall encounter and dissociation. Finally, we quantify the role and weight of rare events, which are expected to play a major role in real-life situations, such as in the immune synapse, where the binding kinetics is likely dominated by fluctuations.
在过去的十年中,人们对设计和生产新型多价分子产生了浓厚的兴趣,这些分子是对抗癌症和传染病的传统抗体的有力替代品。然而,尽管人们普遍认为大规模的灵活性(10-100nm)和自由/约束动力学(100ns-μs)控制着这些新型分子的活性,但在优化关键特性的设计方面,介观尺度的计算策略仍然落后于实验,例如结合协同性(又称亲和力)。在这项研究中,我们引入了一种聚合物连接的双纳米体复合分子的不同粗粒化模型,旨在为介观尺度的全面计算药物设计方案奠定物理基础。我们表明,合适的平均力势的计算可以理解控制自由和壁固定分子运动的热力学力的性质、范围和强度。此外,我们开发了一种简单的计算策略来量化壁固定分子的自由端与表面之间的相遇/解离动力学,这是结合协同性的基础。该方法可以确定内部灵活性和弱非特异性相互作用对纳米体与壁相遇和解离的动力学常数的影响。最后,我们量化了稀有事件的作用和权重,这些事件预计在实际情况中会发挥重要作用,例如在免疫突触中,结合动力学可能受到波动的主导。