Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, 26 Bedford Way, London WC1H 0AP, UK.
Aix-Marseille Université, Université de Toulon, CNRS, CPT, 13288 Marseille, France; Perimeter Institute, 31 Caroline Street North, Waterloo N2L 2Y5, Canada; The Rotman Institute of Philosophy, 1151 Richmond St. N, London N6A 5B7, Canada.
Trends Neurosci. 2020 Jul;43(7):467-474. doi: 10.1016/j.tins.2020.04.008. Epub 2020 Apr 27.
How did brains evolve to become so complex, and what is their future? Brains pose an explanatory challenge because entropy, which inexorably increases over time, is commonly associated with disorder and simplicity. Recently we showed how evolution is an entropic process, building structures - organisms - which themselves facilitate entropy growth. Here we suggest that key transitional points in evolution extended organisms' reach into space and time, opening channels into new regions of a complex multidimensional state space that also allow entropy to increase. Brain evolution enabled representation of space and time, which vastly enhances this process. Some of these channels lead to tiny, dead-ends in the state space: the persistence of complex life is thus not thermodynamically guaranteed.
大脑是如何进化得如此复杂的,它们的未来会怎样?大脑提出了一个解释上的挑战,因为熵随着时间的推移不可避免地增加,通常与无序和简单相关。最近我们展示了进化是一个熵的过程,它构建了结构——生物体——而生物体本身促进了熵的增长。在这里,我们提出,进化中的关键转折点扩展了生物体在空间和时间上的延伸,为进入复杂多维状态空间的新区域开辟了通道,这也允许熵的增加。大脑进化使空间和时间的表示成为可能,极大地促进了这个过程。这些通道中的一些通向状态空间的微小死胡同:因此,复杂生命的持续存在在热力学上是没有保证的。